Forse le traduco

modifica

Redshift Cosmologico

modifica

Il redshift cosmologico è lo spostamento relativo in frequenza di un'onda elettromagnetica dovuto all'espansione dell'universo. Inizialmente lo spostamento verso il rosso veniva attribuito all'effetto Doppler, tramite la relazione

 

ma l'osservazione sperimentale di alcuni quasar con redshift compreso tra 5 e 6 ha smentito tale ipotesi. L'approssimazione del redshift come effetto Doppler è valida zolo se  . Il redshift cosmologico si spiega ipotizzando che le lunghezze d'onda varino allo stesso modo delle distanze per effetto dell'espansione dell'universo, ciò è verificato dal teorema del redshift.

Ipotesi

modifica

Supponiamo che l'universo si stia espandendo, e che tutte le distanze varino secondo un fattore di scala   per cui possiamo ipotizzare

 

dove   è la coordinata comovente, ovvero un tipo di coordinata che segue punto per punto l'espansione dell'universo.

Teorema del redshift

modifica

Il teorema del redshift afferma che la lunghezza d'onda   è proporzionale al fattore di scala dell'universo.

Consideriamo la Metrica di Robertson - Walker

 

dove   è il parametro che identifica i tre diversi modelli di Friedman. Ora supponiamo di osservare un quasar posto ad una distanza comovente   dalla terra (che assumiamo posta nel punto  ) e sotto i due angoli costanti   e  . In tali condizioni la metrica si riduce a

 

ora considerando che stiamo osservando un'onda elettromagnetica dobbiamo porre   ottenendo

 

Ci conviene ora considerare due creste consecutive dell'onda elettromagnetica: la prima emessa ad un tempo   e ricevuta ad un tempo  , e la seconda emessa ad un tempo   e ricevuta ad un tempo  

Integrando la (1) per le due creste separatamente otteniamo

 


 

Dal momento che gli integrali a secondo membro sono uguali possiamo eguagliare gli integrali al primo membro delle due espressioni:

 

A questo punto consideriamo il fatto che la variazione del fattore di scala è molto lenta nel tempo ( ) possiamo considerare il fattore di scala costante sia durante l'emissione delle due creste, sia durante la ricezione, e ottenere

 

e quindi

 

moltiplicando e dividendo il secondo membro per   si ottiene

 

il che è esattamente quello che intendevamo dimostrare.

Il redshift cosmologico

modifica

Se consideriamo, quindi, la definizione di redshift abbiamo:

 

quindi, nel caso del redshift cosmologico si ottiene

 


Per elettrone degenerato, si intende una particolare condizione del gas che compone una stella, che devia dall'andamento statistico normale detto di equilibrio termodinamico.

In condizioni normali, infatti la pressione del gas è una funzione che dipende essenzialmente da due parametri (temperatura e densità del gas). Nel caso di degenerazione invece, il gas tende a seguire una differente distribuzione statistica (non più cioè quella dell'equilibrio termodinamico detta di Maxwell-Boltzmann) che prende il nome di distribuzione di Fermi-Dirac.

In questa distribuzione rientra lo studio di un gas composto di soli elettroni e la cui pressione, in questo caso sarà una funzione che dipenderà unicamente dalla densità stessa del gas. Volendo, inoltre, si potrebbero considerare due casi di degenerazione: quello non relativistico e quello relativistico, a seconda che il momento della quantità di moto massimo (momento di Fermi) che le particelle possono occupare in una distribuzione degenere, sia molto più piccolo o all'incirca uguale alla quantità  , dove   è la massa dell'elettrone e   è la velocità della luce.

Consideriamo un sistema quantistico di molte particelle, e guardiamone lo spazio delle fasi. A causa del principio di esclusione lo spazio delle fasi può essere diviso in tante celle discrete, ognuna di volume

 

e che può contenere al più s particelle, essendo s il numero di stati di spin (s=2 per elettroni, protoni, neutroni).

Per una distribuzione sferica di particelle compresa entro un raggio massimo   ed un momento massimo   il numero di particelle sarà:

 

e quindi, la densità di particelle per unità di volume spaziale sarà:

 

dalla quale ricaviamo l'espressione del momento massimo  , detto momento di Fermi

 

e dal quale si ricava l'energia di Fermi

 

e l'energia media di un elettrone sarà

 

Quindi se tutti gli elettroni hanno energia minore di   il gas si dice degenere e gli si può associare una pressione definita in modo termodinamico (se consideriamo   il coefficiente adiabatico e   la densità di energia):

 

detta Pressione di degenerazione.

Ruolo della pressione nelle stelle

modifica

La pressione di degenerazione è sempre presente in una stella, ma non fornisce un contributo decisivo al suo sostentamento poiché ordinariamente minore della pressione  . Se la stella è in una fase di collasso gravitazionale può accadere che la pressione di degenerazione cresca tanto da superare di gran lunga la pressione ordinaria, a causa dell'aumento di densità della stella. Questo avviene quando la densità raggiunge il valore critico

 

da cui si vede che anche per temperature relativamente alte gli elettroni sono degeneri a patto che la densità sia sufficientemente alta.

Tutto questo è di fondamentale importanza per il sostentamento delle nane bianche e delle stelle di neutroni le quali si formano entrambe quando, in seguito ad un collasso, la pressione di degenerazione (degli elettroni nelle prime, e dei neutroni nelle seconde) diventa sufficientemente alta da contrastare la pressione gravitazionale.

  Portale Fisica: accedi alle voci di Wikipedia che trattano di Fisica

[[Categoria:Astronomia]] [[Categoria:Astrofisica]]