La fisica atomica è la branca della fisica che studia gli atomi come sistemi isolati, comprendenti elettroni e nuclei atomici. Riguarda principalmente la disposizione degli elettroni attorno al nucleo e i processi mediante i quali tali disposizioni mutano. Tale ambito coinvolge chiaramente gli atomi neutri così come gli ioni e, a meno che non altrimenti specificato, il termine atomi include anche gli ioni. La fisica atomica comprende così anche la descrizione e l'evoluzione del modello atomico.

Il termine fisica atomica è spesso erroneamente associato all'energia nucleare e alle bombe nucleari (o bombe atomiche, appunto), ambito tuttavia questo propriamente di interesse della sottobranca della fisica nucleare che focalizza invece l'attenzione solo sul nucleo atomico e le rispettive forze nucleari.

Storia(da riadattare) modifica

Sebbene il chimico Martin Klaproth si imbatté nell'uranio già nel 1789, fino agli ultimi anni del 1800 i fenomeni nucleari continuavano a essere sconosciuti. Altrettanto non si può dire per quanto riguarda la prima metà del XX secolo: in poco meno di una quarantina d’anni, la fisica nucleare assunse un ruolo di estremo rilievo e prestigio anche ben al di là della sola comunità scientifica. Tuttavia, è pur vero che fino al termine del 1930, una ristretta cerchia accademica s’interessava allo studio di questi fenomeni e le uniche, nonché prime, applicazioni furono in campo medico.[1]

In ogni caso, una soddisfacente comprensione della struttura atomica non si ottenne fino al 1932, quando James Chadwick scoprì il neutrone. Il lavoro di Chadwick fu così notevole che è uso distinguere due periodi nella storia della disciplina: ciò che avvenne prima del 1932 e ciò che segue il 1932.[1]

Queste ricerche, almeno nei primi anni, s’inserirono nel più vasto progetto di classificazione e studio degli elementi presenti in natura, ampliando ciò che Lavoisier, Dalton e Mendeleev avevano appreso. Quest’ultimo organizzò gli elementi fino ad allora conosciuti in base al loro peso atomico, proprietà fisiche e chimiche in una tabella che oggi porta il suo nome, fornendo così ai chimici del 1800 un potente strumento per la comprensione della struttura delle molecole. Se al termine del secolo la teoria atomica sembrava essere ben salda su questi fondamenti, non fu così a lungo. Infatti, molti prima di Chadwick iniziarono a investigare il mondo atomico, notando incompatibilità con le conoscenze fino ad allora ritenute certe.[2]

Primo fra tutti fu Wilhem Conrad Röntgen che nel 1895, lavorando con un tubo a raggi catodici, notò un brillante chiarore fluorescente[3] di una lastra all’esterno del contenitore in vetro. Ne dedusse così l’esistenza di una particolare radiazione energetica in grado di penetrare il rivestimento oscurato del tubo catodico, radiazione fino ad allora ignota e per questo chiamata “radiazione x”. Questa permise una migliore comprensione della struttura della materia, in particolare quella cristallina, tanto da sviluppare la cristallografia a raggi x.[2][1]Rientrano spesso nell’immaginario collettivo per il loro uso diagnostico, forse non a sproposito dato che tra il 1899 e il 1907 molti medici sfruttarono la capacità dei raggi x di attraversare i tessuti umani[4], rendendo così visibile la struttura ossea.[5]

L’anno successivo alla scoperta di Röntgen, Bequerel, al tempo uno dei massimi esperti nei fenomeni di fosforescenza e risposta ottica dei materiali, studiò l’ipotesi che sostanze come sali di uranio potessero emettere raggi x se esposti ad una fonte luminosa (come la luce solare). Bequerel osservò come il minerale che conteneva l’uranio continuasse ad emettere radiazione anche in assenza di uno stimolo luminoso esterno. Oggi questo è noto come processo di decadimento radioattivo dei nuclei di uranio, emettendo particelle alfa e beta al fine di acquisire una configurazione stabile. Nonostante la radiazione gamma seguì nel 1900 per opera di Paul Villard, con la sola scoperta di Bequerel l’antica concezione di atomo quanto unità prima ed invisibile era caduta: gli atomi, o perlomeno alcuni di essi, emettevano particelle che componevano gli atomi stessi per cui non era possibile fossero questi i mattoni fondamentali di tutto il mondo materiale.[1][2]

In quegli anni, a Parigi, era attiva Marie Sklodowski (in seguito Marie Curie) che s’interessò al lavoro di Bequerel nella ricerca di un argomento per la propria tesi di dottorato alla Sorbona. Marie Curie si concentrò sull’approfondire lo studio delle emissioni dai sali di uranio, grazie a un elettrometro, strumento inventato dai fratelli Curie per misurare correnti elettriche molto ridotte. Analizzando il minerale pechblenda (già noto a Bequerel) in un laboratorio poco fuori Parigi, Marie e Pierre approdarono alla conclusione che l’uranio non potesse essere l’unico elemento emissivo all’interno del minerale, poiché la quantità di “raggi Bequerel” non era concorde con la sola presenza di solo uranio. Si dedicarono così al lungo lavoro di isolare chimicamente l’altro elemento attivo da diverse tonnellate di pechblenda che avevano a disposizione. E così il polonio fu presentato nel 1898 all’Accademia delle Scienze Francesi, seguito pochi mesi più tardi dal radio.[2]

Nel mentre, in Inghilterra presso il Cavendish Laboratory di Cambridge, Ernest Rutherford non tardò a sperimentare con i molti tubi a raggi catodici di cui il laboratorio era fornito grazie al suo direttore, Joseph John Thomson. Thomson era per tutta l’Europa un riferimento nell’ambito della fisica sperimentale: oltre alle sue indubbie capacità, fu il primo a far breccia nella struttura atomica identificando “corpuscoli” (ora elettroni) di massa ben minore rispetto a quella dell’intero atomo.[5] In realtà, il fisico britannico incontrò gli elettroni durante i propri esperimenti atti a determinare la natura delle interferenze luminose all’interno di un tubo catodico a vuoto spinto.[6] Per questa ragione il laboratorio era ben fornito della strumentazione di cui farà uso Rutherford. Durante questi anni, infatti, egli sviluppò metodi di attenuazione del potere emissivo dell’uranio, riuscendo a schermare efficacemente le particelle alfa tramite fogli di alluminio.[2] Una sua grande scoperta avvenne nel 1900, due anni dopo essersi trasferito da Cambridge all’Università di Montréal, in Canada. Qui lo studioso neozelandese, concentrandosi sul torio, descrisse per la prima volta il concetto di vita media, una peculiare caratteristica del decadimento radioattivo.[1]

Rutherford, all’Università McGill, collaborò anche con Frederick Soddy, chimico scopritore pochi anni più tardi (1911) di vari isotopi di elementi radioattivi (fu Soddy a introdurre il termine “isotopo” nel 1913).[7] Si accorsero che il torio aveva la capacità di trasformarsi spontaneamente in elementi differenti, fra cui il radon, che venne così aggiunto alla tavola periodica. L’importanza degli isotopi venne a crescere con l’invenzione della spettroscopia di massa, tecnica in grado di effettuare misure molto precise delle masse atomiche. Fu questa che permise a Francis Aston, assistente di Thomson dal 1909, di scoprire più di 200 isotopi prodotti per processi naturali.[2]

Nel medesimo anno, Rutherford si spinse oltre, tanto che il suo maggior contributo lo diede nel provare che gli atomi fossero dotati di un nucleo. Nel suo esperimento, condotto con Hans Geiger ed Ernest Marsden, fece in modo di forzare il passaggio di particelle alfa attraverso una sottile lamina d’oro (scelto usato perché possibile ottenerne una lastra molto compatta), con la convinzione che queste particelle sarebbero transitate con nessuna deviazione o, al più, con deviazione trascurabile.[2][8] Con non poca sorpresa dei tre, alcune particelle (una in 8000 pressappoco) non solo non transitarono in linea retta ma venivano deflesse in direzione opposta al loro moto in ingresso nella camera a nebbia. Rutherford comunicò questi risultati a Manchester nel 1911, anno in cui si ritiene aver preso il via quella che sarà poi la concezione dell’atomo come un sistema solare su dimensioni microscopiche.[1]

Per valide ragioni Rutherford viene definito come il “padre della fisica nucleare”.[9] Infatti, fu suo il merito di portare all’attenzione i protoni, evidenziati tramite collisioni fra nuclei e particelle alpha, e l’atomo di idrogeno, l’elemento più semplice esistente. L’idrogeno interessò Rutherford per diversi mesi, che lo videro impegnati in molti tentativi di intaccarne il nucleo, tramite bombardamento con particelle alpha, senza tuttavia riuscirci: fu così costretto a dedurre che al centro dell’atomo di idrogeno non ci sia altro che un protone.[2]

Queste nuove evidenze, per quanto sorprendenti, non lasciarono i fisici loro agio con la struttura atomica ipotizzata. Principalmente due furono le perplessità, derivate una dal tentativo di ricondurre l’atomi nel grande edificio della fisica classica e l’altra da dati sperimentali.

Alla prima difficoltà pose temporaneo rimedio Niels Bohr nel 1913, proponendo l’idea che gli elettroni ruotassero attorno al nucleo centrale su orbite ben precise lungo le quali non emettono alcuna energia. La seconda difficoltà invece riguardava accurate e ripetute misure della massa dei diversi elementi che, con la sola eccezione dell’idrogeno, risultavano pressoché il doppio di quanto le teorie non affermassero.[2] Pertanto si fece strada il sospetto che il nucleo atomico fosse composto d’altro rispetto a soli protoni e elettroni (la cui massa, oltretutto, era ridicola rispetto a quella del protone).[1] Le misurazioni delle masse suggerivano che un'altra tipologia di particelle componesse il nucleo, ma questa non era stata ancora osservata nelle camere a nebbia. Fu James Chadwick nel 1932 ad ottenere l’evidenza della particella che chiamerà “neutrone”, nome dovuto alla neutralità di carica elettrica. Chadwick riuscì con successo a bombardare con radiazione alpha una lastra di berillio, da cui si separarono particelle che causarono l’emissione di protoni da pannello di paraffina. Seppur la camera a nebbia non individuò le particelle che colpirono la paraffina, Chadwick dedusse indirettamente l’esistenza di “proiettili” che invece la colpirono.

Di pari passo con queste scoperte, si affacciarono molte speculazioni teoriche che promettevano di rendere conto del mondo atomico. A titolo d’esempio, negli anni trenta molti fisici si domandarono quale fosse il ruolo dei neutroni nella stabilità del nucleo. Il fisico giapponese Hideki Yukawa suggerì che i protoni non si respingessero a vicenda grazie a una nuova particella, il pione, mediatrice dell'interazione nucleare forte.[2][10]

Bibliografia modifica

  • Bransden, BH e Joachain, CJ, Physics of Atoms and Molecules, 2nd, Prentice Hall, 2002, ISBN 0-582-35692-X.
  1. ^ a b c d e f g (EN) Bruce Cameron Reed, The History and Science of the Manhattan Project, collana Undergraduate Lecture Notes in Physics, Springer Berlin Heidelberg, 2014, pp. 119–174, DOI:10.1007/978-3-642-40297-5_4, ISBN 9783642402975. URL consultato il 18 novembre 2019.
  2. ^ a b c d e f g h i j (Italian) Gerhard Staguhn, Breve storia dell'atomo, Salani, 2011, ISBN 9788862562928, OCLC 724936509. URL consultato il 18 novembre 2019. Lingua sconosciuta: Italian (aiuto)
  3. ^ Storia della Radiologia, su nde-ed.org.
  4. ^ History of Medicine: Dr. Roentgen’s Accidental X-Rays | Columbia University Department of Surgery, su columbiasurgery.org. URL consultato il 18 novembre 2019.
  5. ^ a b (EN) J.J. Thomson | Biography, Nobel Prize, & Facts, su Encyclopedia Britannica. URL consultato il 18 novembre 2019.
  6. ^ The Discovery of Radioactivity, su www2.lbl.gov. URL consultato il 18 novembre 2019.
  7. ^ History of Nuclear Energy - World Nuclear Association, su www.world-nuclear.org. URL consultato il 18 novembre 2019.
  8. ^ (EN) Ernest Rutherford | Accomplishments, Atomic Theory, & Facts, su Encyclopedia Britannica. URL consultato il 18 novembre 2019.
  9. ^ History of Nuclear Energy (PDF), su energy.gov.
  10. ^ Nuclear physics and technology - inside the athom (PDF), su iop.org.