Apri il menu principale
Fig.(1) Definizione di dimensione, partendo da un oggetto unitario.[1]

In geometria frattale la dimensione frattale, spesso indicata con D è una quantità statistica che dà un'indicazione di quanto completo appare un frattale per riempire lo spazio. La definizione di dimensione frattale non è unica, infatti vi sono diverse specifiche definizioni. Le più importanti sono la dimensione di Hausdorff, la dimensione di Minkowski-Bouligand, la dimensione di Rényi e la dimensione packing. In pratica viene spesso usato il conteggio del numero di box (box counting) per la sua semplice implementazione.

DefinizioniModifica

 
Fig.(2) Costruzione del triangolo di Sierpinski

Esistono due metodi per generare una struttura frattale. Il primo è ingrandire un oggetto unitario (vedi figura 1) e il secondo è costruire la sotto sequenza di divisione della struttura originale (vedi figura 2). In questo articolo si seguirà la seconda procedura.

Se si prende un oggetto unitario con dimensione lineare pari a 1 nella dimensione euclidea  , e riduciamo la sua dimensione lineare di un fattore   in ogni direzione spaziale, esso prende un numero pari a   di oggetti simili, per ricostruire l'oggetto originale (vedi figura 1).

La dimensione frattale è quindi definita da:

 

(dove il logaritmo può essere di qualsiasi base) è ancora uguale alla sua dimensione topologica ed euclidea.[1] Applicando l'equazione precedente alla struttura frattale, si può ottenere la dimensione frattale di tale struttura:

 

dove  (ε) indica la similarità della struttura lineare ε che serve per ricoprire l'intera struttura.

Ad esempio, la dimensione frattale del triangolo di Sierpinski rappresentato in figura 2, è dato da:

 

NoteModifica

Voci correlateModifica

Altri progettiModifica

Collegamenti esterniModifica

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica