Apri il menu principale

Cause e conseguenzeModifica

La disattivazione di un catalizzatore può avvenire per:[1][2]

  • degradazione termica
    • sinterizzazione (sintering): agglomerazione di più particelle di catalizzatore, che comporta una diminuzione irreversibile della superficie disponibile allo scambio di materia. Questo fenomeno viene accentuato all'aumentare della temperatura;[3]
  • invecchiamento (ageing)[4]
  • avvelenamento (poisoning): consiste nell'adsorbimento chimico o fisico indesiderato di un composto chimico (detto "veleno"[5]), che in questa maniera diminuisce irreversibilmente (nel caso dell'avvelenamento chimico) o reversibilmente (nel caso dell'avvelenamento fisico) il numero di siti disponibili. L'entità di questo fenomeno dipende dalla quantità e dalla natura delle impurezze presenti nella corrente alimentata al reattore chimico (detta anche "carica"). Sebbene in genere è indesiderato, talvolta l'avvelenamento viene effettuato di proposito al fine di aumentare la selettività del catalizzatore (a discapito della sua attività).[6]
  • sporcamento (fouling): ricoprimento della superficie del catalizzatore da polveri, che diminuiscono l'attività del catalizzatore.
    • coking: è un caso particolare di sporcamento, in cui la superficie subisce un ricoprimento di particelle carboniose (coke);[7] nel caso del coking, le particelle carboniose possono essere rimosse per ossidazione.
  • volatilizzazione dei componenti attivi.

Oltre alla perdita dell'efficienza, un altro svantaggio del fenomeno della disattivazione è associato alla complicazione delle equazioni cinetiche, per cui la modellazione risulta più difficoltosa a causa di questo fenomeno.

RimediModifica

I fenomeni di disattivazione del catalizzatore possono essere smorzati utilizzando le seguenti tipologie di reattore:[1]

Una volta che il catalizzatore è stato disattivato, si può ricorrere alla sua rigenerazione o alla sua sostituzione.[8]

Esempi di veleni per catalizzatoriModifica

Viene presentata di seguito una tabella non esaustiva di alcuni catalizzatori, i relativi veleni e i processi industriali in cui è possibile che avvenga l'avvelenamento in questione.[2][9]

Catalizzatore Veleno Processo industriale
Nichel Raney acciaio dolce
Alluminosilicati (catalizzatori a base di silice-allumina) carbonio cracking del petrolio
Catalizzatori metallici dei gruppi 10-11 (Ni, Pd, Pt,[10] Cu) Elementi dei gruppi 15 e 16 (S, Se, Te, P, As), alogeni, composti del piombo, composti del mercurio, ossigeno, piridina, chinolina idrogenazione o deidrogenazione
Catalizzatori a base di Fe Elementi dei gruppi 15 e 16 (S, Se, Te, P, As), alogeni, acqua, ossigeno, NO, CO sintesi dell'ammoniaca
Catalizzatori a base di Co Elementi dei gruppi 15 e 16 (S, Se, Te, P, As), CO
Catalizzatori a base di Pt-Rh P, As, composti dell'antimonio, Pb, Zn, Cd, Bi, ossidi alcalini idrogenazione
Zeoliti acide ammoniaca, ammine, alcoli, acqua

NoteModifica

  1. ^ a b http://studenti.dicamp.units.it/Reattori%20Chimici%20II/Slides/23_Catalisi.ppt
  2. ^ a b Ullmann's, cap. 9.1.
  3. ^ Il meccanismo di sinterizzazione, che non è voluto nel caso della catalisi, trova invece utilizzo in altri settori che riguardano la scienza dei materiali.
  4. ^ (EN) IUPAC Gold Book, "catalyst ageing"
  5. ^ (EN) IUPAC Gold Book, "poison (in catalysis)"
  6. ^ Wen-Teng Chang, "Selective growth of carbon nanotubes using catalyst poisoning and geometric trench"
  7. ^ (EN) IUPAC Gold Book, "coking"
  8. ^ Copia archiviata (PDF), su arpa.fvg.it. URL consultato il 22 giugno 2009 (archiviato dall'url originale il 17 aprile 2012). p.158
  9. ^ catalyst poison (chemistry) - Britannica Online Encyclopedia
  10. ^ Ad esempio catalizzatore di Adam (PtO2)

BibliografiaModifica

Voci correlateModifica

Collegamenti esterniModifica

  Portale Chimica: il portale della scienza della composizione, delle proprietà e delle trasformazioni della materia