Apri il menu principale

Distribuzione di Poisson

distribuzione di probabilità discreta
Distribuzione di Poisson
Funzione di distribuzione discreta
Distribuzione di probabilità
Funzione di ripartizione
Funzione di ripartizione
Parametri
Supporto
Funzione di densità
Funzione di ripartizione
(dove è la funzione gamma incompleta)
Valore atteso
Medianacirca
Moda
sia che se
Varianza
Indice di asimmetria
Curtosi
Entropia
Funzione generatrice dei momenti
Funzione caratteristica

In teoria delle probabilità la distribuzione di Poisson (o poissoniana) è una distribuzione di probabilità discreta che esprime le probabilità per il numero di eventi che si verificano successivamente ed indipendentemente in un dato intervallo di tempo, sapendo che mediamente se ne verifica un numero . Ad esempio, si utilizza una distribuzione di Poisson per misurare il numero di chiamate ricevute in un call-center in un determinato arco temporale, come una mattinata lavorativa. Questa distribuzione è anche nota come legge degli eventi rari.

Prende il nome dal matematico francese Siméon-Denis Poisson.

Indice

DefinizioneModifica

La distribuzione di Poisson   è una distribuzione di probabilità discreta data da

  per ogni  ,

dove   è il numero medio di eventi per intervallo di tempo, mentre   è il numero di eventi per intervallo di tempo (lo stesso col quale si misura  ) di cui si vuole la probabilità.

Dallo sviluppo in serie dell'esponenziale   si trova  .

ConvergenzaModifica

La distribuzione di Poisson può essere ottenuta come limite delle distribuzioni binomiali  , con  , ovvero si ha una convergenza in legge di   a  . Per questa convergenza la distribuzione di Poisson è anche nota come legge (di probabilità) degli eventi rari.

In statistica si adotta l'approssimazione della distribuzione binomiale tramite la distribuzione di Poisson quando n>20 e p<1/20, o preferibilmente quando n>100 e np<10.

CaratteristicheModifica

Una variabile aleatoria Y di distribuzione di Poisson ha

 
 
(Riscriviamo   come  )
 
 ,  
 

che ha un andamento  

ProprietàModifica

Se   e   sono due variabili aleatorie indipendenti con distribuzioni di Poisson di parametri   e   rispettivamente, allora

  • la loro somma   segue ancora una distribuzione di Poisson, di parametro  ;
  • la distribuzione di   condizionata da   è la distribuzione binomiale di parametri   e  .

Più in generale, la somma   di n variabili aleatorie indipendenti con distribuzioni di Poisson di parametri   segue una distribuzione di Poisson di parametro  , mentre la distribuzione di   condizionata da   è la distribuzione binomiale di parametri   e  .

Distribuzioni collegateModifica

Se la distribuzione di Poisson di parametro   descrive il numero di eventi in un intervallo di tempo, il tempo di attesa tra due eventi successivi è descritto dalla distribuzione esponenziale di parametro  .

La distribuzione di Skellam è definita come la distribuzione della differenza tra due variabili aleatorie indipendenti aventi entrambe distribuzioni di Poisson.

La mistura di distribuzioni tra la distribuzione di Poisson e la distribuzione Gamma (che governa il parametro  ) è la distribuzione di Pascal, che talvolta è anche detta Gamma-Poisson.

La distribuzione di Panjer, definita per ricorsione, generalizza la distribuzione di Poisson:  .

StatisticaModifica

ApprossimazioniModifica

Per   una variabile aleatoria con distribuzione di Poisson   viene solitamente approssimata con la distribuzione normale  ; per parametri più piccoli ( ) sono invece necessarie delle correzioni di continuità, legate ai diversi domini delle due distribuzioni (una discreta, una continua).

La radice quadrata di una variabile aleatoria con distribuzione di Poisson è approssimata da una distribuzione normale meglio di quanto lo sia la variabile stessa.

Il parametro   può essere stimato come la media delle osservazioni effettuate. Questo stimatore è privo di bias, ovvero ha come valore atteso   stesso.

Inferenza bayesianaModifica

Se il parametro   di una distribuzione di Poisson è distribuito a priori secondo la distribuzione Gamma, allora lo è anche a posteriori dell'osservazione  .

Intervallo di confidenza per la mediaModifica

Un criterio rapido per il calcolo approssimato dell'intervallo di confidenza della media campionaria è fornito in Guerriero (2012). Dato un numero k di eventi (almeno 15-20 per un'approssimazione soddisfacente) registrati in un certo intervallo di tempo - o di lunghezza, volume etc. -, i limiti dell'intervallo di confidenza per il parametro λ sono dati da:

 
 

StoriaModifica

Questa distribuzione fu introdotta da Siméon-Denis Poisson nel 1838 nel suo articolo "Recherches sur la probabilité des jugements en matière criminelle et en matière civile"[1][2]. Secondo alcuni storici questa variabile casuale dovrebbe portare il nome di Ladislaus Bortkiewicz considerati gli studi fatti da questo nel 1898.[3]

In realtà la poissoniana come approssimazione della binomiale era già stata introdotta nel 1718 da Abraham de Moivre in Doctrine des chances.[4]

Tavole dei valori della funzione di probabilitàModifica

λ = 0,1; 0,2; ... 1,0Modifica

k 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679
1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679
2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839
3 .0002 .0011 .0033 .0072 .0126 .0198 .0254 .0383 .0494 .0613
4 .0001 .0003 .0007 .0016 .0030 .0050 .0077 .0111 .0153
5 .0001 .0002 .0004 .0007 .0012 .0020 .0031
6 .0001 .0002 .0003 .0005
7 .0001

λ = 1,2; 1,4; ... 3,0Modifica

k 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0
0 .3012 .2466 .2019 .1653 .1353 .1108 .0907 .0743 .0608 .0498
1 .3614 .3452 .3230 .2975 .2707 .2438 .2177 .1931 .1703 .1494
2 .2169 .2417 .2584 .2678 .2707 .2681 .2613 .2510 .2384 .2240
3 .0867 .1128 .1378 .1607 .1804 .1966 .2090 .2176 .2225 .2240
4 .0260 .0395 .0551 .0723 .0902 .1082 .1254 .1414 .1557 .1680
5 .0062 .0111 .0176 .0260 .0361 .0476 .0602 .0735 .0872 .1008
6 .0012 .0026 .0047 .0078 .0120 .0174 .0241 .0319 .0407 .0504
7 .0002 .0005 .0011 .0020 .0034 .0055 .0083 .0118 .0163 .0216
8 .0001 .0002 .0005 .0009 .0015 .0025 .0038 .0057 .0081
9 .0001 .0002 .0004 .0007 .0011 .0018 .0027
10 .0001 .0002 .0003 .0005 .0008
11 .0001 .0001 .0002
12 .0002

λ = 3,5; 4,0; ... 8,0Modifica

k 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0
0 .0302 .0183 .0111 .0067 .0041 .0025 .0015 .0009 .0006 .0003
1 .1057 .0733 .0500 .0337 .0225 .0149 .0098 .0064 .0041 .0027
2 .1850 .1465 .1125 .0842 .0618 .0446 .0318 .0223 .0156 .0107
3 .2158 .1954 .1687 .1404 .1133 .0892 .0688 .0521 .0389 .0286
4 .1888 .1954 .1898 .1755 .1558 .1339 .1118 .0912 .0729 .0573
5 .1322 .1563 .1708 .1755 .1714 .1606 .1454 .1277 .1094 .0916
6 .0771 .1042 .1281 .1462 .1571 .1606 .1575 .1490 .1367 .1221
7 .0385 .0595 .0824 .1044 .1234 .1377 .1462 .1490 .1465 .1396
8 .0169 .0298 .0463 .0653 .0849 .1033 .1188 .1304 .1373 .1396
9 .0066 .0132 .0232 .0363 .0519 .0688 .0858 .1014 .1144 .1241
10 .0023 .0053 .0104 .0181 .0285 .0413 .0558 .0710 .0858 .0993
11 .0007 .0019 .0043 .0082 .0143 .0225 .0330 .0452 .0585 .0722
12 .0002 .0006 .0016 .0034 .0065 .0113 .0179 .0263 .0366 .0481
13 .0001 .0002 .0006 .0013 .0028 .0052 .0089 .0142 .0211 .0296
14 .0001 .0002 .0005 .0011 .0022 .0041 .0071 .0113 .0169
15 .0001 .0002 .0004 .0009 .0018 .0033 .0057 .0090
16 .0001 .0003 .0007 .0014 .0026 .0045
17 .0001 .0003 .0006 .0012 .0021
18 .0001 .0002 .0005 .0009
19 .0001 .0002 .0004
20 .0001 .0002
21 .0001

NoteModifica

  1. ^ (EN) Jan Gullberg, Mathematics from the birth of numbers, W. W. Norton & Company; p. 963-965. ISBN 0-393-04002-X ISBN 978-0-393-04002-9
  2. ^ Siriani Filippo, Enciclopedia delle Matematiche elementari e complementi vol. III p.214, HOEPLI Editore, Milano 1954
  3. ^ Ladislaus von Bortkiewicz, Das Gesetz der kleinen Zahlen [The law of small numbers] (Leipzig, Germany: B.G. Teubner, 1898). On page 1, Bortkiewicz presents the Poisson distribution. On pages 23–25, Bortkiewicz presents his famous analysis of "4. Beispiel: Die durch Schlag eines Pferdes im preussischen Heere Getöteten." (4. Example: Those killed in the Prussian army by a horse's kick.).
  4. ^ Johnson, N.L., Kotz, S., Kemp, A.W. (1993) Univariate Discrete distributions (2nd edition). Wiley. ISBN 0-471-54897-9, p157

BibliografiaModifica

Voci correlateModifica

Altri progettiModifica

Collegamenti esterniModifica

Controllo di autoritàLCCN (ENsh85103956 · GND (DE4253010-6
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica