Apri il menu principale

Geometria analitica

Branca della geometria, appartenente agli studi matematici
(Reindirizzamento da Geometria cartesiana)

La geometria analitica, chiamata anche geometria cartesiana, è lo studio delle figure geometriche attraverso il sistema di coordinate oggi dette cartesiane, ma già studiate nel Medioevo da Nicola d'Oresme.

Ogni punto del piano cartesiano è individuato dalle sue coordinate su due assi: ascisse (x) e ordinate (y), nello spazio è individuato da 3 coordinate (x,y,z). Le coordinate determinano un vettore rispettivamente del tipo oppure . Gli enti geometrici come rette, curve, poligoni sono definiti tramite equazioni, disequazioni o insiemi di queste, detti sistemi.

Le proprietà di questi oggetti, come le condizioni di incidenza, parallelismo e perpendicolarità, vengono anch'esse tradotte in equazioni e quindi studiate con gli strumenti dell'algebra e dell'analisi matematica.

Il termine geometria analitica è stato usato anche da alcuni matematici moderni come Jean-Pierre Serre per definire una branca della geometria algebrica che studia le varietà complesse determinate da funzioni analitiche.

Le formule della geometria analitica possono essere agevolmente estese nello spazio a tre dimensioni. La geometria strutturale studia le proprietà delle figure geometriche in uno spazio a quattro o più dimensioni, e il loro rapporto con le figure in tre dimensioni.
La geometria descrittiva è in parte attinente poiché rappresenta su uno o più piani, oggetti bidimensionali e tridimensionali. Giuseppe Veronese tentò una descrizione a quattro o più dimensioni, priva di rigore formale logico, e fortemente criticata da Giuseppe Peano.

Indice

Storia della geometria analiticaModifica

René Descartes introdusse le basi della geometria analitica nel 1637 nel saggio intitolato Geometria incluso nel suo libro Discorso sul metodo per ben condurre la propria ragione e cercare la verità nelle scienze più la Diottrica, le Meteore e la Geometria che sono saggi di questo metodo (la cui prefazione è il famoso Discorso sul metodo). Questo lavoro scritto in francese e i suoi principi filosofici, fornirono le fondamenta per il calcolo differenziale, che sarà successivamente introdotto da Isaac Newton e Gottfried Wilhelm Leibniz, in maniera autonoma fra loro.

I temi più importanti della geometria analitica sono:

Molti di questi problemi comprendono l'algebra lineare.

BibliografiaModifica

Voci correlateModifica

Altri progettiModifica

Collegamenti esterniModifica

Controllo di autoritàLCCN (ENsh85054141 · GND (DE4001867-2 · BNF (FRcb11938440r (data)
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica