Icosidodecaedro troncato

Icosidodecaedro troncato
Icosidodecaedro troncato
(Animazione)
TipoSolido archimedeo
Forma facceQuadrati, esagoni e decagoni
Nº facce62
Nº spigoli180
Nº vertici120
Valenze vertici3
DualeEsacisicosaedro
Proprietànon chirale

In geometria solida l'icosidodecaedro troncato (o grande rombicosidodecaedro) è uno dei tredici poliedri archimedei.

Ha 62 facce, divise in 12 decagoni, 20 esagoni e 30 quadrati, 180 spigoli e 120 vertici, in ciascuno dei quali concorrono un decagono, un esagono ed un quadrato.

La terminologia utilizzata per descrivere questo solido è impropria: troncando le 30 cuspidi dell'icosidodecaedro, infatti, si otterrebbero delle facce rettangolari anziché quadrate. L'icosidodecaedro troncato è più propriamente un icosidodecaedro rombitroncato.

Area e volumeModifica

L'area   ed il volume   di un icosidodecaedro troncato i cui spigoli hanno lunghezza   sono le seguenti:

 
 
 
Uno sviluppo dell'icosidodecaedro troncato

DualitàModifica

Il poliedro duale dell'icosidodecaedro troncato è l'esacisicosaedro.

SimmetrieModifica

Il gruppo delle simmetrie dell'icosidodecaedro troncato ha 120 elementi; il gruppo delle simmetrie che preservano l'orientamento è il gruppo icosaedrale  . Sono gli stessi gruppi di simmetria dell'icosaedro, del dodecaedro e dell'icosidodecaedro.

 
dodecaedro
 
icosidodecaedro troncato
 
icosaedro

Altri solidiModifica

L'icosidodecaedro troncato può essere ottenuto troncando al contempo tanto le cuspidi quanto gli spigoli dell'icosaedro o, equivalentemente, del dodecaedro.

Le venti facce esagonali e le dodici facce decagonali dell'icosidodecaedro troncato giacciono sui piani delle facce di un icosaedro e di un dodecaedro, rispettivamente. Le trenta facce quadrate, invece, giacciono sugli stessi piani delle facce di un triacontaedro rombico, poliedro duale dell'icosidodecaedro. In altre parole, unendo i centri dei decagoni si ottiene un icosaedro, unendo i centri degli esagoni un dodecaedro ed unendo i centri dei quadrati un icosidodecaedro.

Unendo vertici alterni dell'icosidodecaedro troncato si ottiene un poliedro simile al dodecaedro simo, ma con facce non regolari.

 
Scheletro dell'icosidodecaedro troncato

BibliografiaModifica

  • Henry Martin Cundy & A. P. Rollett, I modelli matematici, Milano, Feltrinelli, 1974.
  • Maria Dedò, Forme, simmetria e topologia, Bologna, Decibel & Zanichelli, 1999, ISBN 88-08-09615-7.

Voci correlateModifica

Altri progettiModifica

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica