Motore a vapore

apparecchiatura adatta a produrre energia
(Reindirizzamento da Macchina a vapore)

Un motore a vapore è una macchina motrice che trasforma, tramite il vapore d'acqua, energia termica in energia meccanica. Il calore è in genere prodotto dalla combustione di un combustibile fossile, carbon fossile, legna o idrocarburo gasolio, olio combustibile ma anche scarto termico di processi industriali.

Motore a vapore

StoriaModifica

 
I primi esperimenti

Sin dall'Ellenismo è documentata la presenza di esperimenti per sfruttare l'energia derivante dall'espansione dei composti dovuta alla transizione di fase liduido-aeriforme del vapore acqueo. Tra questi si ricorda l'eolipila di Erone di Alessandria, una macchina composta da una sfera cava di Rame riempita d'acqua, con bracci tangenziali opposti dotati di foro di uscita; applicando una fonte di calore in prossimità del recipiente contenente l'acqua, questa si vaporizzava e il vapore acqueo usciva dai fori, facendo ruotare la sfera stessa.

Vanno ricordati i tentativi di usare il vapore di Leonardo da Vinci con la sua macchina detta l’Archituono, e nel 1606 gli esperimenti di Giovanni Battista Della Porta che riuscirono ad utilizzarlo come forza motrice. Esperimenti analoghi a quelli del Della Porta vennero compiuti anche dall'ingegnere Salomon de Caus, che nel 1615 pubblicò un trattato sul suo sistema contenente una pompa a vapore.

 
Pompa a vapore di Thomas Savery

In tempi più recenti, le prime applicazioni del vapore si possono far risalire agli esperimenti di Denis Papin ed alla sua pentola a pressione del 1679 da cui partì per concepire idee su come sviluppare l'utilizzo del vapore. Le successive applicazioni si sono avute all'inizio del XVIII secolo, soprattutto per il pompaggio dell'acqua dalle miniere, con il sistema ideato nel 1698 da Thomas Savery utilizzando il vuoto creato dalla condensazione del vapore immesso in un recipiente (che permetteva di sollevare acqua fino a circa 10 m di altezza), e in seguito, grazie all'invenzione del sistema cilindro-pistone (probabilmente dovuta a Denis Papin), convertendo in movimento meccanico, in grado di generare lavoro, l'energia del vapore. Il primo esempio di applicazione industriale di questo concetto è la macchina di Newcomen, del 1705, che era però grande, poco potente, costosa, e soprattutto attuava un movimento solo alternativo, per questo motivo quindi anch'essa veniva in genere usata solo per l'estrazione di acqua dalle miniere.

Agli inizi il motore a vapore funzionava a bassa pressione: il vapore veniva prodotto usciva subito dalla caldaia al cilindro; tali motori erano di conseguenza enormi rispetto alla potenza erogata; l'installazione su veicoli semoventi richiedeva quindi la progettazione di motori più piccoli e leggeri a parità di potenza; per questo motivo vennero creati motori ad alta pressione, ovvero che accumulavano la pressione all'interno della caldaia anziché espellerla nel cilindro man mano che si produceva. Solo più tardi però, grazie all'invenzione del condensatore esterno, della distribuzione a cassetti e del meccanismo biella-manovella (che consentiva di creare un movimento rotatorio anziché solo alternativo come fino allora), tutte attribuite a James Watt a partire dal 1765, si è potuti passare da applicazioni sporadiche ad un utilizzo generalizzato nei trasporti e nelle industrie. La macchina di Watt riduceva costi, dimensioni e consumi, e aumentava la potenza disponibile. Dal primo modello con 4,4 kW si è passati in meno di 20 anni a locomotive da 0.4 MW.

Il motore a vapore, consentendo potenze assai maggiori di quelle fino ad allora disponibili (un cavallo in corsa può produrre 8 kW per brevi tratti, ma per lavorare una giornata non può produrre più di 0.7 kW). Il motore a vapore ha svolto un ruolo fondamentale nella rivoluzione industriale: ha facilitato l'estrazione ed il trasporto del carbone, e quindi la diminuzione del costo, che a sua volta ha aumentato le potenzialità del motore a vapore. La seconda applicazione del motore a vapore fu muovere il mantice in fonderia per la prima volta 1776, mentre dal 1787 esso fu usato anche nelle cotonerie per filare.

L'incidenza del motore a vapore è evidente: la produzione mondiale di carbone passò da 6 Tg del 1769 a 65 Tg del 1819; il ferro (richiesto per l'acciaio) dai 40 Gg del 1780 ai 700 Gg del 1830. Nel 1830 vi erano 15.000 motori a vapore nel Regno Unito, tra cui 315 piroscafo. Dal 1860 uno scienziato francese, Augustin Mouchot, iniziò a studiare vari modi, utilizzando l'energia solare, per alimentare i motori a vapore.

DescrizioneModifica

 
Motore a vapore in azione
 
Diagramma che mostra i quattro stadi nel cilindro di un motore alternativo
 
Animazione di un motore a tripla espansione. Il vapore ad alta pressione (rosso) entra dalla caldaia, passa attraverso il motore ed è rilasciato al condensatore come vapore a bassa pressione (blu).

Una parte essenziale del sistema del motore a vapore è il generatore di vapore, il quale fornisce la grande energia termica necessaria per la vaporizzazione del vapore acqueo e poi inviato al motore. Il motore può essere: alternativo o rotativo. Si usa di solito la locuzione motore a vapore per il solo motore alternativo, mentre per il motore rotativo rotativo viene definito turbina a vapore.

In quello alternativo in genere la ruota azionata muove le valvole che consentono di sfruttare i due lati di ogni pistone, così in ogni singola rotazione del motore si hanno due fasi attive, mentre il motore a combustione interna ha in genere un'espansione ogni 4 tempi. A partire dalla seconda metà del 1800 la quasi totalità dei motori a vapore ha utilizzato due, tre e anche quattro cilindri in serie cioè a doppia espansione e tripla espansione, (vedi animazione); i diversi stadi lavorano con pressioni di vapore decrescenti in modo da sfruttare meglio la pressione degli scarichi degli stadi precedenti, che contengono ancora una certa potenza.

La soluzione a tripla espansione fu quella adottata da tutte le navi della seconda metà dell'800 e dei primi anni del '900. Per esempio il transatlantico Titanic era equipaggiato con due motori a vapore a tripla espansione, uno per ciascuna delle due eliche laterali a quattro cilindri, uno ad alta pressione, uno a pressione intermedia e due a bassa pressione. Invece l'elica centrale era collegata ad una turbina a vapore mossa dal vapore a bassissima pressione scaricata dai due motori alternativi. Proprio la soluzione a turbina, adottata a cominciare dalle navi militari a partire dal 1905, avrebbe soppiantato sulle navi i motori alternativi, prima di essere a sua volta soppiantata dai motori a combustione interna e dalle turbine a gas nei decenni successivi. Le turbine a vapore rimangono in uso soprattutto nelle centrali elettriche come forza motrice per azionare gli alternatori trifase.

Nelle applicazioni tradizionali, oggi il motore a vapore è stato quasi completamente sostituito dal motore a combustione interna, che è più compatto e potente e non richiede la fase di preriscaldamento per mettere la caldaia in pressione, che si traduce in un ritardo prima di poter utilizzare il motore stesso.

Sono invece in sviluppo recente per soluzione isolate, e per piccole potenze, (5-300 kW), motori alternativi a vapore a ciclo chiuso, con l'adozione di materiali di alta tecnologia (ceramici, compositi, superleghe), e l'utilizzo di masse estremamente piccole di fluido agente (e della assistenza al ciclo di sistemi informatici), si ottengono vaporizzazioni e condensazioni estremamente veloci, e rendimenti apprezzabili, con un meccanismo meccanico e fluidistico estremamente semplificato. A copertura del problema della lubrificazione che inquina il vapore, che ha sempre afflitto tutti i tipi di motori a vapore (l'olio va in emulsione nel vapore) si adotta con successo lo stesso fluido di ciclo (acqua) come lubrificante. Data la compattezza del sistema, e ottima duttilità e versatilità di utilizzo (il motore non è legato ad un combustibile specifico), è possibile un utilizzo per autotrazione.

Le macchine a vapore di PapinModifica

Denis Papin fece studi in medicina ad Angers. All'inizio lavora con Christian Huygens a Leida, dove tenta di mettere a punto una pompa ad aria. Nel 1679 inventa la pentola a pressione, depositando all'epoca, il brevetto con la scritta "il qui presente 'digestore' rende digeribile molte quantità di cibi, tra cui le carni più dure". In seguito lavora per qualche tempo con Robert Boyle, per ritornare poi con Huygens nel 1680. Dopo un soggiorno a Venezia come direttore delle pratiche all'Accademia Ambrosio Sarrotti, e quindi alla Royal Society di Londra, fu nominato professore di matematica a Marburgo. A questo punto, partendo dall'esperienza della pentola a pressione, Papin costruisce la sua prima macchina a vapore: un battello a vapore nel 1707. Ma questa superba invenzione comporta molte controversie da parte dei battellieri che minacciano di distruggere il battello. Papin ritorna in seguito finalmente in Inghilterra, dove, malgrado le nuove ricerche, le sue risorse vanno a diminuire.

NoteModifica


BibliografiaModifica

  • Salomon de Caus, La raison des forces mouvantes, Jean Norton ed., Francoforte, 1615, e Parigi, 1624
  • Carlo Abate, La locomotiva a vapore, Milano, Hoepli, 1924
  • Antonio Capetti, Motori a vapore, Torino, V. Giorgio, 1963
  • Carlo Bramanti, Il motore a vapore, Albino, Sandit, 2009, ISBN 978-88-95990-25-5

Voci correlateModifica

Altri progettiModifica

Collegamenti esterniModifica

Controllo di autoritàThesaurus BNCF 55301 · LCCN (ENsh85127673 · GND (DE4010992-6 · BNF (FRcb11966647v (data) · NDL (ENJA00575025