Apri il menu principale

Notazione di Lagrange

La notazione di Lagrange per la derivata totale di una funzione di più variabili rispetto a una sua variabile è:

oppure

In alternativa si può esplicitare la variabile di derivazione anche a pedice

oppure

Talvolta è chiaro quale sia la variabile di derivazione , come succede sempre nel caso la funzione abbia una sola variabile, la notazione diventa in tal caso:

oppure

Il nome è dovuto a Joseph-Louis Lagrange.

Cenni storiciModifica

Questa notazione è stata introdotta da Giuseppe Lodovico Lagrangia nel XVIII secolo, ed è oggi di gran lunga la più usata per indicare la derivata. L'idea è quella di rappresentare l'operazione di derivata con un apice sopra la   di funzione.

Notazione per le derivate successiveModifica

  oppure  

La derivata seconda viene indicata con un doppio apice, la terza con un triplo apice, oppure anche con l'ordine tra parentesi: quest'ultima diventa l'unica via praticabile a livello ortografico oltre la terza derivazione.

BibliografiaModifica

Voci correlateModifica