Apri il menu principale

Nell'analisi dei sistemi dinamici, un sistema dinamico lineare è un sistema dinamico la cui evoluzione è governata da un'equazione lineare, e che quindi soddisfa il principio di sovrapposizione degli effetti. Le equazioni differenziali che descrivono tale classe di sistemi dinamici sono particolarmente semplici, e possono essere frequentemente risolte in modo esatto.

Un sistema dinamico è un concetto astratto che si utilizza per rappresentare il comportamento di un processo fisico nello spazio e nel tempo. Viene modellizzato con una funzione che, nel dominio del tempo, ad una sollecitazione fornisce una risposta :

I sistemi lineari sono soggetti al principio di sovrapposizione, ovvero un sistema è lineare se valgono le seguenti proprietà:

Una classe particolarmente importante di sistemi dinamici lineari è quella dei sistemi tempo-invarianti.

DescrizioneModifica

Un sistema dinamico è lineare quando dipende linearmente dalle variabili di stato   e dalle variabili di ingresso  . Viene descritto dalla variazione del vettore colonna di stato  , ambientato in uno spazio vettoriale di dimensione   detto spazio delle fasi, secondo le equazioni matriciali:

 
 

dove   è l'uscita o evoluzione. Lo stato   è un vettore di dimensione  , l'ingresso   ha dimensione  , mentre   ha dimensione  ; sono moltiplicati per le matrici   matrice di dimensione  ,   matrice di dimensione  ,   matrice di dimensione   e   matrice matrice di dimensione  .

Nel caso di un sistema dinamico a tempo discreto l'equazione ha la forma:

 
 

con  .

 
Una tecnica utilizzata per studiare un problema non lineare   nelle vicinanze di un punto di equilibrio è quella di approssimarlo ad un sistema lineare   in un intorno del punto di equilibrio tramite la matrice jacobiana   di  . A seconda del comportamento del sistema (a seconda del determinante di  ) l'equilibrio è classificato come stabile, asintoticamente stabile o instabile.

Sistemi lineari tempo-invarianti (LTI)Modifica

 Lo stesso argomento in dettaglio: Sistema dinamico lineare stazionario.

Un sistema stazionario (o tempo invariante) è un sistema i cui parametri non dipendono dal tempo. Viene descritto da un sistema di equazioni differenziali a coefficienti costanti:

 

Si tratta di una classe di problemi particolarmente studiata e della quale sono state sviluppate molte tecniche di analisi; molte sono ad esempio basate sulla funzione di trasferimento e sul formalismo della rappresentazione spettrale dei segnali e in spazio di stato.

Scomposizione del problema differenzialeModifica

Talvolta si sceglie di rappresentare il sistema soltanto attraverso la variazione del suo stato a partire da uno stato iniziale  , ovvero con una relazione del tipo:

 
 

Se il vettore iniziale   è allineato con un autovettore destro   di  , allora:

 

con   l'autovalore corrispondente. La soluzione è:

 

come si verifica per sostituzione.

Se   è diagonalizzabile, ogni vettore   in   può essere scritto come combinazione lineare di autovettori destro   e sinistro   di  :

 

dove   è il prodotto scalare che fornisce i coefficienti. Dunque, la soluzione generale   è la combinazione lineare:

 

In due dimensioniModifica

Dato il sistema in due dimensioni:

 

il polinomio caratteristico ha la forma:

 

con   la traccia e   il determinante di  . Le radici   sono gli autovalori di  , ed hanno la forma:

 

Si nota che   e  , sicché se   gli autovalori hanno segno opposto ed il punto fisso è un punto di sella. Se invece   gli autovalori hanno lo stesso segno, e quindi se   sono entrambi positivi (ed il punto è instabile) mentre se   sono entrambi negativi (ed il punto è stabile).

EsempioModifica

Un circuito RC è formato da un generatore di tensione che fornisce un segnale di ingresso   e da un resistore   in serie ad un condensatore di capacità  . La legge di Kirchhoff delle tensioni per la maglia è:

 

Usando la relazione caratteristica del condensatore la corrente che scorre nel circuito è:

 

si ha sostituendo:

 

Si tratta di un'equazione differenziale di ordine 1 con costante di tempo  .

BibliografiaModifica

  • (EN) Phillips, C.l., Parr, J.M., & Riskin, E.A, Signals, systems and Transforms, Prentice Hall, 2007, ISBN 0-13-041207-4.
  • (EN) Hespanha,J.P., Linear System Theory, Princeton university press, 2009, ISBN 0-691-14021-9.
  • E. Fornasini, G. Marchesini, Appunti di Teoria dei Sistemi, Edizioni Libreria Progetto, Padova, 2003.
  • A. Ruberti, S. Monaco, Teoria dei Sistemi - Appunti dalle lezioni, Pitagora Editrice, Bologna, 1998.

Voci correlateModifica