Apri il menu principale

Sistema dinamico

(Reindirizzamento da Sistemi dinamici)

DescrizioneModifica

Lo studio dei sistemi dinamici rappresenta uno dei più antichi e importanti settori della matematica e della fisica; si tratta di un modello matematico utilizzato per descrivere i sistemi meccanici nell'ambito della meccanica classica e nella sua riformulazione sviluppata dalla meccanica lagrangiana e dalla meccanica hamiltoniana, e che è presente in molti settori dell'ingegneria, come l'automatica e l'ingegneria dei sistemi. Le applicazioni sono molteplici, spaziando dai circuiti elettrici ai sistemi termodinamici.

Alla fine del diciannovesimo secolo, poi, Henri Poincaré osserva la possibilità di un comportamento fortemente irregolare di alcuni sistemi dinamici studiando il problema dei tre corpi: negli anni '50 del secolo successivo, in seguito agli esperimenti numerici del meteorologo Edward Lorenz, che studiando l'atmosfera terrestre rivelò la dipendenza sensibile dalle condizioni iniziali, i risultati di Poincaré vennero presi in grande considerazione dalla comunità scientifica e posero le basi alla teoria del caos. Il comportamento caotico dei sistemi dinamici, la cui controparte matematica può raggiungere gradi di complessità che rendono vincolante l'utilizzo del calcolatore, è stato riscontrato in molti e diversi ambiti dello studio della natura della civiltà umana, tra cui la biologia e l'economia. Si può definire sistema dinamico un sistema la cui modellizzazione matematica può essere espressa da un'equazione differenziale (ordinaria o alle derivata parziali). A partire da questo esistono diversi formalismi matematici utili alla sua descrizione e studio sia in ambito fisico che ingegneristico (ingegneria dei sistemi e automatica).

Si possono identificare due tipologie di sistema dinamico:

  • se l'evoluzione avviene ad intervalli discreti di tempo il sistema viene chiamato sistema dinamico discreto ed è definito dall'iterazione di una funzione;
  • se l'evoluzione è continua e definita da un'equazione differenziale, il sistema viene chiamato sistema dinamico continuo.

Di particolare importanza sono i sistemi dinamici lineari, i più semplici da analizzare in quanto le equazioni non lineari non sono solitamente risolvibili in modo esatto. Tra i sistemi lineari, i sistemi lineari tempo-invarianti (sistemi LTI) vengono ampiamente utilizzati nella teoria dei segnali e nella teoria del controllo.

Una delle caratteristiche dei sistemi dinamici che viene studiata più spesso è la stabilità. Per esempio, è comune studiare la stabilità in termini di limitatezza delle uscite nei confronti di un ingresso limitato (stabilità esterna), oppure in termini di allontanamento da uno stato di equilibrio (stabilità interna).

Per analizzare matematicamente il comportamento di un sistema dinamico si utilizzano soprattutto due tipologie di descrizione, la rappresentazione in spazio di stato e il formalismo del dominio della frequenza (si veda la funzione di trasferimento nel caso di sistemi stazionari).

DefinizioneModifica

Nello specifico, per ogni   si può definire   tale che:

 
 

dove:

 

Ciò rispecchia il fatto che la legge di evoluzione   del sistema non cambia essa stessa nel tempo. Le funzioni   parametrizzate da  , con la legge di composizione  , formano un gruppo commutativo ad un parametro. Frequentemente nel caso discreto   coincide con  , mentre nel caso continuo   coincide con  .[1]

Il grafico di   è la traiettoria del sistema nel tempo e l'insieme:

 

è l'orbita passante per   (ovvero l'immagine del flusso in  ).

Un sottoinsieme   è detto  -invariante se:

 

In particolare, affinché   sia invariante si deve verificare   per tutti gli  , ovvero il flusso lungo   deve essere definito per tutti i punti di   ad ogni tempo.

Allora abbiamo la seguente definizione: sia   una varietà differenziale  -dimensionale, con   finito, e   un gruppo di diffeomorfismi di mappe regolari  , allora la coppia   è detta sistema dinamico regolare invertibile (continuo se   o discreto se   oppure  ).

Sistemi fisiciModifica

 Lo stesso argomento in dettaglio: Meccanica lagrangiana e Meccanica hamiltoniana.

La dinamica dei sistemi fisici può essere caratterizzata dal fatto che il loro moto tra due punti di coordinate generalizzate   e   segue un cammino che rende stazionario, ovvero a variazione nulla, il funzionale azione:[2]

 

in accordo con il principio di minima azione (principio variazionale di Hamilton). L'azione è l'integrale nel tempo della lagrangiana  :[3]

 

dove  . Si dimostra che   così definita soddisfa le equazioni di Eulero-Lagrange:

 

dove   Rendere stazionaria l'azione corrisponde a minimizzare l'energia del sistema considerato, e solitamente si fa corrispondere all'energia totale del sistema una funzione  , detta hamiltoniana e introdotta nel 1835 da William Rowan Hamilton, che dipende dalle coordinate generalizzate   e dai rispettivi momenti coniugati:

 

L'hamiltoniana è data dalla somma   dell'energia cinetica   e dell'energia potenziale   del sistema, ed è la trasformata di Legendre della lagrangiana  :[4][5]

 

dove  . La formalizzazione di un problema dinamico tramite il principio di minima azione (valido per sistemi olonomi e monogenici) è alla base della riformulazione della meccanica classica sviluppata dalla meccanica hamiltoniana e lagrangiana.

In particolare le equazioni di Hamilton:

 

sono equivalenti alle equazioni del moto di Eulero-Lagrange, a loro volta equivalenti alla legge di Newton.[6]

Il principio di conservazione dell'energia viene poi espresso, in tale contesto, dicendo che   è un integrale primo delle equazioni di Hamilton, oppure con il fatto che la lagrangiana non dipende esplicitamente dal tempo:

 

Più in generale, per il teorema di Noether ad ogni simmetria della lagrangiana, ovvero ad ogni trasformazione infinitesima continua delle coordinate   che lascia inalterata  , corrisponde una quantità conservata.

EsempioModifica

In meccanica classica un esempio elementare di sistema dinamico è fornito da un punto che si muove nello spazio. Il punto viene completamente caratterizzato dalla sua posizione   (un vettore dipendente da  ) e dalla sua velocità  . Lo stato di tale sistema è il vettore  , dove   è lo spazio degli stati utilizzato e i suoi elementi rappresentano tutti i possibili stati che il sistema può assumere. Lo spazio degli stati viene anche detto spazio delle fasi. L'evoluzione temporale del punto è quindi data dalle due derivate:

 

dove   è l'accelerazione del punto (che dipende dalla somma delle forze a cui è soggetto). Definendo:

 

il moto del punto può essere scritto con l'equazione ordinaria autonoma:

 

Scegliendo un punto e una velocità iniziali  , ovvero ponendo  , si ottiene l'evoluzione del sistema a partire da   (problema di cauchy per l'equazione differenziale).

Tutti i sistemi dinamici a tempo continuo vengono scritti in modo analogo, eventualmente con   che dipende esplicitamente dal tempo:

 

dove   è una funzione almeno differenziabile. Tale sistema può essere ricondotto a quello autonomo ( ) con un cambio di variabili.

La soluzione   al variare di   è la traiettoria (orbita) seguita dal sistema nello spazio delle fasi a partire da  . Nell'impostare formalmente lo studio di un sistema dinamico si fa in modo che la funzione   sia sufficientemente regolare da fornire una soluzione unica (teorema di esistenza e unicità), in accordo con il fatto che l'evoluzione del sistema a partire da un punto dato è unica. In generale, un sistema dinamico   è definito da un gruppo (o un semigruppo)  , che è l'insieme dei valori del parametro tempo  , e un insieme  , detto lo spazio delle fasi o spazio degli stati. La funzione di evoluzione temporale (flusso)   determina l'azione di   su  . Nella teoria ergodica   è uno spazio misurabile con misura di probabilità   e   è una funzione misurabile che preserva  , mentre nella cosiddetta topologia dinamica   è uno spazio topologico completo e   è una funzione continua (spesso anche invertibile).[7]

Esempi tipici di sistemi dinamici continui sono:

Esempi di sistemi dinamici discreti sono:

ClassificazioneModifica

Sistemi continuiModifica

Data una varietà  , sia   un campo vettoriale differenziabile, cioè che associa ad ogni punto   un vettore le cui coordinate sono legate alle coordinate di   (definite in un suo intorno rispetto a qualche base) tramite una funzione differenziabile. Un sistema dinamico è definito dall'equazione autonoma (l'equazione del moto per sistemi meccanici):

 

Trattandosi di un'equazione differenziale ordinaria, il relativo teorema di esistenza e unicità della soluzione stabilisce che preso un punto iniziale   esiste un intervallo  , con  , in cui il sistema dinamico ha una soluzione unica  .

Se la soluzione (traiettoria) esiste per tutti i tempi e per qualsiasi scelta del punto iniziale   si ha che il tempo può scorrere nel verso contrario, ovvero è possibile predire il passato conoscendo uno stato del sistema nel futuro. In particolare, si verifica che   e l'insieme delle   forma un gruppo continuo ad un parametro di diffeomorfismi su  .

La struttura matematica che viene assegnata allo spazio delle fasi   dipende comunque dal contesto; solitamente è uno spazio topologico, in cui ha senso parlare di continuità nell'evoluzione temporale dello stato. Uno spazio topologico in cui è possibile l'utilizzo di strumenti metrici e differenziali è ad esempio la varietà differenziabile, una delle strutture più utilizzate in quanto risulta particolarmente adatta per modellare i sistemi fisici. Per i sistemi nei quali allo stato viene associata una nozione di misura, ad esempio una probabilità, si utilizza uno spazio misurabile. Si richiede inoltre che il flusso   sia compatibile con la struttura di  : nel caso in cui   sia rispettivamente uno spazio topologico, uno spazio misurabile, una varietà differenziabile o una varietà complessa,   è un omeomorfismo, una funzione misurabile, un diffeomorfismo o una funzione olomorfa.

Sistemi discretiModifica

I sistemi dinamici discreti sono definiti da un'iterazione del tipo:

 

di una funzione  , con  . Può essere vista come un'equazione alle differenze:

 

che definendo   assume la stessa forma dell'equazione differenziale ordinaria del caso continuo.

Le orbite di un sistema discreto sono una successione di stati  . Il gruppo di trasformazioni è quindi dato dall'insieme:

 

dove l'espressione   indica la composizione di funzioni   di   con sé stessa iterata   volte.

Classificazione in base a ingressi e usciteModifica

In ambito ingegneristico i sistemi dinamici vengono classificati in base al numero di variabili d'ingresso e d'uscita, si hanno infatti:

  • sistemi a singolo ingresso e singola uscita (SISO, dall'inglese single input-single output);
  • sistemi a ingresso multiplo e uscita multipla (MIMO, dall'inglese multiple input-multiple output);

e meno frequentemente:

  • sistemi a singolo ingresso e uscita multipla (SIMO, dall'inglese single input-multiple output);
  • sistemi a ingresso multiplo e singola uscita (MISO, dall'inglese multiple input-single output).

Sistemi lineariModifica

 Lo stesso argomento in dettaglio: Sistema dinamico lineare.

Una classe molto importante di sistemi dinamici è quella dei sistemi lineari, in cui il legame tra variabili di ingresso e l'uscita è lineare. Sono utilizzati ad esempio nella teoria dei segnali o nella teoria dei circuiti, e spesso sono analizzati in frequenza tramite l'utilizzo di trasformate integrali, come la trasformata di Fourier o la trasformata di Laplace.

Un sistema lineare di   stati  ,   input   e   uscite   viene descritto da un'equazione del tipo:[8]

 
 

dove  ,  ,   e   sono matrici (che nel caso stazionario non dipendono dal tempo).

Sistemi lineari e stazionariModifica

 Lo stesso argomento in dettaglio: Sistema tempo-invariante, Sistema dinamico lineare stazionario e Sistema dinamico lineare stazionario discreto.

Un sistema dinamico lineare e stazionario è anche detto lineare tempo-invariante, abbreviato spesso con la sigla LTI (dall'inglese Linear Time-Invariant). Nel caso di un sistema continuo, è caratterizzato dal fatto che l'uscita   per un segnale in ingresso   è descritta dalla convoluzione:

 

dove   è la risposta impulsiva, ovvero la risposta del sistema quando l'ingresso   è una funzione a delta di Dirac. Se la funzione   è nulla quando   allora   dipende soltanto dai valori assunti da   precedentemente al tempo  , ed il sistema è detto causale.

Un sistema a tempo discreto trasforma la successione in ingresso   in un'altra successione  , data dalla convoluzione discreta con la risposta   alla delta di Kronecker:

 

Gli elementi di   possono dipendere da ogni elemento di  . Solitamente   dipende maggiormente dagli elementi in prossimità del tempo  .

I sistemi lineari stazionari sono spesso descritti nel dominio della frequenza (risposta in frequenza) attraverso la funzione di trasferimento, definita come la trasformata di Laplace della risposta all'impulso a Delta.

Sistemi strettamente propriModifica

Un ulteriore classificazione per i sistemi lineari li divide in strettamente propri (o puramente dinamici) quando l'uscita dipende esclusivamente dagli stati del sistema, e in tal caso nella rappresentazione matriciale ciò corrisponde a una matrice   nulla, mentre si parla di sistema improprio in tutti gli altri casi. Un caso particolare di sistema proprio si ha quando è la matrice   ad azzerarsi, in tal caso il sistema è detto non dinamico e non è necessario ricorrere a variabili di stato per rappresentarlo, poiché il legame fra ingresso e uscita è istantaneo.[9] È possibile dimostrare che un sistema puramente dinamico ha funzione di trasferimento con grado del numeratore minore a quello del denominatore mentre un sistema non dinamico ha, ovviamente, funzione di trasferimento con grado zero.

Sistemi non lineariModifica

 Lo stesso argomento in dettaglio: Sistema dinamico non lineare.

Sistemi complessiModifica

 Lo stesso argomento in dettaglio: Teoria della complessità e Sistema complesso.

AnalisiModifica

 Lo stesso argomento in dettaglio: Analisi dei sistemi dinamici.

L'analisi dei sistemi dinamici o è lo studio del comportamento dei sistemi medesimi. Dal momento che la definizione di sistema dinamico è molto generale, sono diverse le discipline che propongono un modello matematico di sistema dinamico in riferimento a contesti particolari.

Ad esempio, in meccanica classica le equazioni del moto di Newton sono state riformulate dalla meccanica lagrangiana e dalla meccanica hamiltoniana, mentre in ingegneria i sistemi dinamici - che possono essere ad esempio circuiti - hanno una uscita (output) e un ingresso (input). Nel caso gli ingressi siano sottoposti ad un segnale aggiuntivo di controllo, si entra nell'ambito dell'analisi dei sistemi di controllo.

In tutti i casi, l'analisi dei sistemi dinamici viene effettuata impostando un sistema di una o più equazioni differenziali per le quali si specificano dei dati iniziali.

Rappresentazione nello spazio di statoModifica

 Lo stesso argomento in dettaglio: Spazio di stato.

Rappresentazione nel dominio della frequenzaModifica

 Lo stesso argomento in dettaglio: Dominio della frequenza e Rappresentazione spettrale dei segnali.

Rappresentazione graficaModifica

Traiettorie di statoModifica

Supponendo di perturbare un sistema ed osservando la traiettoria di una grandezza di interesse, si verificano casi di particolare interesse quando l'evoluzione tenderà a stabilizzarsi in una posizione di equilibrio, ovvero un punto fisso dell'evoluzione del sistema.

Gli equilibri di un sistema cambiano al variare di ingressi e disturbi (supposti costanti), ad esempio modificando la tensione ai capi di un motore varia la velocità raggiunta a regime. Lo studio degli equilibri di un sistema dinamico è di estremo interesse, tipicamente i problemi di controllo possono essere interpretati come una modifica del punto di equilibrio di un dato sistema. Un esempio semplice è dato dall'equilibrio termico di un appartamento, la cui temperatura interna è l'equilibrio imposto dalle condizioni ambientali ed interne. L'utilizzo di un condizionatore d'aria (sistema di controllo) modificando la temperatura interna alla stanza non fa altro che modificare il punto di equilibrio del sistema.

Modello a scatoleModifica

 Lo stesso argomento in dettaglio: Teoria dei Sistemi.

Nell'ingegneria dei sistemi un sistema può essere modellizzato graficamente tramite una scomposizione in un insieme di sottosistemi collegati tra loro in vario modo (serie, parallelo, retroazione ecc...), ciascuno dei quali è identificato da uno scatolotto il cui funzionamento o comportamento è descritto da una funzione di sottoprocesso che esso svolge all'interno del sistema generale. Lo schema risultante si darà schema a blocchi del sistema (si veda Modello black-box, Modello white-box e Modello grey-box).

L'analisi di tali sistemi può essere fatta tramite l'ottenimento della cosiddetta funzione di trasferimento ovvero il rapporto tra la trasformata di laplace dell'ingresso e la trasformata dell'uscita ovvero tramite la cosiddetta risposta impulsiva, antitrasformata della funzione di trasferimento ovvero risposta da un impulso semplice dove l'uscita viene computata nel dominio del tempo dalla convoluzione di tale risposta impulsiva con l'ingresso desiderato ovvero con il prodotto della funzione di trasferimento per l'ingresso trasformato e poi il tutto antitrasformatato. Altro modo di rappresentazione analogo è il modello autoregressivo ingresso-stato-uscita a media mobile (ARMA).

Stabilità e punti di equilibrioModifica

 Lo stesso argomento in dettaglio: Teoria della stabilità.

Si possono definire diversi tipi di stabilità per un sistema dinamico, ad esempio la stabilità esterna, anche detta stabilità BIBO (da Bounded Input, Bounded Output), ovvero la proprietà di avere un'uscita limitata se l'ingresso è limitato, oppure la stabilità interna, che si riferisce alla capacità di tornare in una configurazione di equilibrio dopo una perturbazione dello stato di equilibrio stesso. La stabilità esterna viene generalmente utilizzata per analizzare il comportamento di sistemi lineari stazionari (per i quali si valutano i poli della funzione di trasferimento), mentre la stabilità interna sfrutta la rappresentazione in spazio di stato del sistema ed è stata studiata in particolare da Aleksandr Michajlovič Ljapunov.

L'analisi della stabilità di un sistema meccanico è collegata con il fatto che il sistema, se lasciato libero di evolvere, tende spontaneamente a portarsi in una configurazione dove la sua energia potenziale è minima: tale configurazione che corrisponde ad uno stato di equilibrio stabile (si veda il teorema di Lagrange-Dirichlet).

Stabilità internaModifica

 Lo stesso argomento in dettaglio: Stabilità interna.

Stabilità esternaModifica

 Lo stesso argomento in dettaglio: Stabilità esterna.

Un sistema è stabile esternamente (BIBO stabile) se ad un ingresso limitato corrisponde una uscita limitata. La limitatezza di una funzione scalare   è generalmente definita in tale contesto dal fatto che esiste un   tale che:

 

Nel caso di sistemi dinamici lineari, un sistema lineare è BIBO stabile se e solo se la risposta impulsiva   è assolutamente integrabile, cioè esiste un   tale che:[10]

 

Stabilità strutturaleModifica

 Lo stesso argomento in dettaglio: Stabilità strutturale.

Controllabilità e osservabilitàModifica

 Lo stesso argomento in dettaglio: Teoria del controllo, Controllabilità e Osservabilità.

I concetti di controllabilità e osservabilità di un sistema dinamico sono stati introdotti da Kalman nel 1960 e sono alla base della teoria del controllo. Informalmente, un sistema è controllabile se è possibile portarlo in qualsiasi configurazione finale agendo opportunamente sull'ingresso in un tempo finito; viceversa, è osservabile se dall'uscita è possibile risalire allo stato del sistema. Nei sistemi lineari controllabilità e osservabilità sono due proprietà duali.

Sistemi lineariModifica

Dato un sistema dinamico lineare:

 
 

dove   è un vettore costante, si consideri la matrice:

 

Il sistema è completamente osservabile se il rango di   è massimo.

Considerando invece la matrice:

 

il sistema è completamente controllabile se la matrice ha rango massimo.

Definendo il sistema duale:[11]

 
 

si dimostra che il sistema di partenza è completamente osservabile se e solo se il sistema duale è completamente controllabile, ed è completamente controllabile se e solo se il sistema duale è completamente osservabile.

Sistemi non lineariModifica

Dato un sistema dinamico definito su una varietà   di dimensione  :

 
 

con   l'ingresso,   l'uscita e  , i problemi di controllabilità si traducono nel verificare se lo spazio delle fasi   è sufficientemente grande da contenere tutti gli stati possibili (altrimenti il sistema non è osservabile) o se, al contrario, contiene stati che il sistema non può raggiungere (il sistema non è controllabile).

Una descrizione matematica comunemente utilizzata considera l'algebra di Lie   di campi vettoriali sullo spazio delle fasi   generata dal campo vettoriale  , con   un controllo costante: se la dimensione dell'algebra è costante esiste un'unica sotto-varietà   tangente lo stato iniziale   contenente tutte le orbite raggiungibili dal sistema (andando avanti o all'indietro nel tempo) passanti per  . Se la dimensione di   è   allora   e il sistema è in qualche modo controllabile; in caso contrario, se la dimensione è minore di   si considera solo l'insieme   in cui il sistema è controllabile.[12]

Sistemi ergodiciModifica

 Lo stesso argomento in dettaglio: Teoria ergodica.

Teoria delle biforcazioniModifica

 Lo stesso argomento in dettaglio: Teoria delle biforcazioni.

La teoria delle biforcazioni si occupa delle variazioni nella struttura delle orbite di un sistema dinamico al variare di un parametro del sistema, nel caso in cui tali variazioni non siano topologicamente equivalenti.

Caos e attrattoriModifica

 Lo stesso argomento in dettaglio: Teoria del caos e Attrattore.

EsempioModifica

Per introdurre l'analisi di un sistema dinamico possiamo fare riferimento al modello costituito da un serbatoio d'acqua forato. In tale modello fissiamo le variabili e le costanti del sistema che si è creato. Abbiamo:

  • la sezione del serbatoio   che rimane costante nel tempo;
  • una costante generale   del liquido considerato che comprende diversi fattori costanti rispetto al tempo come la densità del liquido e la dimensione del foro;
  • il livello di acqua nel serbatoio   che definiamo come variabile di stato del sistema;
  • la portata d'acqua entrante che definiamo ingresso del sistema  
  • la portata uscente dell'acqua che definiamo uscita del sistema   che è proporzionale alla quantità di liquido sovrastante (ossia livello d'acqua per la sezione del serbatoio) e alla costante del sistema, infatti  

Sappiamo che, essendo un serbatoio un sistema dinamico, il suo stato al tempo   è definito sia dalla variabile di ingresso, sia dalla variabile di uscita, sia dallo stato precedente del sistema   Possiamo quindi definire la formula generale dei sistemi dinamici (del primo ordine: ossia quelli definiti da una sola variabile di uscita) per i quali:

 

Se voglio sapere il livello di acqua nel serbatoio all'istante   posso ragionare sulle variabili del sistema:

  1. so che   corrisponde alla quantità di liquido del serbatoio (quantità entrante meno quantità uscente)
  2. so che tale valore è uguale a   (in quanto tale valore corrisponde anch'esso alla variazione di livello di liquido all'interno del serbatoio nell'unità di tempo), quindi
  3.  
  4. ricavo il rapporto   e ottengo
  5.   che si ritrova perfettamente con la formula generale dei sistemi di primo ordine.

Se volessimo analizzare graficamente l'andamento dello stato del sistema potremmo, tramite foglio di calcolo, determinare l'avanzare del sistema in funzione di un intervallo di tempo   che viene scelto "empiricamente" tramite la formula   ossia   diviso il valore assoluto del coefficiente moltiplicante lo stato del sistema nella formula generale dei sistemi.

Graficamente otterrei un iniziale andamento esponenziale del sistema seguito da un equilibrio dello stato del sistema. Tendenza dei sistemi dinamici è infatti il raggiungimento di uno stato di equilibrio che si conservi nel tempo.

NoteModifica

BibliografiaModifica

Voci correlateModifica

Altri progettiModifica

Collegamenti esterniModifica

Controllo di autoritàNDL (ENJA00576625