Teoria ingenua degli insiemi: differenze tra le versioni

fix incipit
(Annullata la modifica 109382182 di 62.19.187.37 (discussione) Era giusto)
Etichetta: Annulla
(fix incipit)
 
La '''teoria ingenua degli insiemi'''<ref>Riguardo all'origine dell'espressione "teoria ingenua degli insiemi", Jeff Miller [http://members.aol.com/jeff570/s.html] ha questo da dire: "''teoria ingenua degli insiemi'' (in opposizione a teoria assiomatica degli insiemi) era usata occasionalmente negli anni 1940 e divenne un termine radicato nel 1950. Appare nella pubblicazione ''The Philosophy of Bertrand Russell'' di P. A. Schilpp (ed) nel ''American Mathematical Monthly'', 53., No. 4. (1946), p. 210 e nella pubblicazione ''The Paradox of Kleene and Rosser'' di Laszlo Kalmar's nel ''Journal of Symbolic Logic'', 11, No. 4. (1946), p. 136. (JSTOR)." Il termine è stato successivamente reso popolare dal libro di [[Paul Halmos]], ''Naive Set Theory'' (1960).</ref> siè distingue dallauna [[teoria assiomatica degli insiemi]] per il fatto che la prima considera gli [[insiemiInsieme|questi ultimi]] comesecondo collezionila nozione intuitiva di oggetti,collezioni chiamatidi ''elementi''. oSi ''membri''distingue dell'insiemedalla [[teoria assiomatica degli insiemi]], mentreche lainvece secondadefinisce consideragli insiemi quellicome quegli oggetti che soddisfano determinati assiomi. Gli insiemi hannosono una grande importanza inun [[Fondamenti della matematica|concetto matematico fondamentale]]; infatti, nelle trattazioni formali moderne, la maggior parte degli oggetti matematici ([[numero|numeri]], [[relazione (matematica)|relazioni]], [[funzione (matematica)|funzioni]], etc.) sono definiti in termini di insiemi.
 
==Introduzione==