Anarmonicità: differenze tra le versioni

2 621 byte aggiunti ,  11 anni fa
nessun oggetto della modifica
Nessun oggetto della modifica
Nessun oggetto della modifica
{{s|fisicameccanica}}
L''''anarmonicità''' rappresenta la deviazione di un sistema oscillante rispetto al modello dell'[[oscillatore armonico]], ed è calcolabile facendo ricorso alla [[teoria perturbativa]] nel caso di basse anarmonicità o ad altre [[analisi numerica|tecniche numeriche]] se essa è consistente. Nell'oscillatore anarmonico è possibile osservare multipli della frequenza fondamentale dell'oscillatore <math>\omega_A</math> che differisce dalla '''<math>\omega_N</math>''' del moto armonico in prima approssimazione proporzionalmente al quadrato della ampiezza di oscillazione '''A''':
 
:<math>\; \Delta \omegaomega_A = \omegaomega_A - \omega_0omega_N</math>
L'oscillatore armonico è un sistema ideale caratterizzato da una singola [[frequenza]] di oscillazione che dipende solamente dalla costante elastica e dalla [[massa (fisica)|massa]]. La relazione tra la [[forza]] e lo [[Spostamento (fisica)|spostamento]] è di tipo lineare ed è stabilita dalla [[legge di Hooke]]. Nel caso invece in cui sia presente l'anarmonicità la relazione tra forza e spostamento non è più di tipo lineare, ma dipende dalla ampiezza dello spostamento indotto. Di conseguenza è possibile osservare multipli della frequenza fondamentale dell'oscillatore (''armoniche superiori''), frequenza <math>\omega</math> che differisce dalla <math>\omega_0</math> del moto armonico proporzionalmente al quadrato della ampiezza di oscillazione:
:<math>\Delta \omegaomega_A\propto A^2</math>.
 
Perciò risulta il manifestarsi di oscillazioni con le frequenze delle '''[[armoniche superiori]]''' <math>2\omega_A</math> e <math>3\omega_A</math> ecc., dove <math>\omega_A</math> è la '''[[frequenza fondamentale]]''' dell'oscillatore. Inoltre, la frequenza <math>\omega_A</math> devia dalla frequenza naturale <math>\omega_N</math>.
:<math>\; \Delta \omega = \omega - \omega_0</math>
:<math>\Delta \omega\propto A^2</math>.
 
In un sistema di oscillatori con [[modi normali]] <math>\omega_\alpha</math>, <math>\omega_\beta</math>, ... l'anarmonicità si risolve in oscillazioni addizionali con frequenze <math>\omega_\alpha\pm \omega_\beta</math>.
L'anarmonicità può essere calcolata facendo ricorso alla [[teoria perturbativa]] o ad altre [[analisi numerica|tecniche numeriche]].
 
L'anarmonicità modifica anche il profilo della curva di risonanza, portando ad interessanti fenomeni come la [[risonanza nonlineare]] e la risonanza superarmonica.
 
== Principio generale ==
Una versione generalizzata dell'oscillatore armonico è quella di una sistema altamente idealizzato che oscilla con una singola frequenza, irrispettosa della quantità di energia cedutagli dall'esterno. Conseguentemente, la frequenza fondamentale dell'oscillatore armonico è indipendente dall'ampiezza delle vibrazioni. In un oscillatore anarmonico accade il contrario: la relazione dinamica tra forza e spostamento non è più lineare ma dipende dall'[[ampiezza]] dell'oscillazione, e quindi anche la frequenza può dipendervi. Questi cambiamenti risultano in un''''accoppiamento parametrico''' dell'energia ad altre frequenze.
 
== Esempi fisici==
 
Ci sono molti sistemi nel mondo fisico: a livello '''meccanico''' la nonlinearità sorge già nel caso più semplice nel [[pendolo matematico]] per angoli crescenti, che tende peraltro a esibire comportamenti caotici; come anche in una [[molla]] in snervamento o il cui peso non è rigido. In effetti la nonlinearità sopraggiunge quando l'ampiezza oltrepassa valori-soglia.
 
Esempi fuori dalla meccanica sono semiconduttori non in equilibrio che posseggono una popolazione calda abbastanza grande e che tendono ad esibire oscillazioni anarmoniche legate alla massa effettive delle cariche, così come [[plasmi]] [[ionosfera|ionosferici]]. Un [[atomo]] la sperimenta uno sdoppiamento tra centro di massa del [[nucleo atomico]] e la [[nube elettronica]] sotto l'applicazione di un [[campo elettrico]]: si genera un [[dipolo elettrico]]che si comporta come oscillatore, e per intensità di campo crescenti perde la sua linearità come un sistema meccanico. L'anarmonicità gioca anche un ruolo importante nei [[reticoli cristallini]], nelle vibrazioni quantistiche [[molecola]]ri [http://jchemed.chem.wisc.edu/Journal/issues/2005/Aug/abs1263_2.html], e in [[acustica]].
 
== Metodo di Weierstrass ==
 
Si consideri un potenziale unidimensionale '''<math>U(x)</math>''' supposto simmetrico rispetto all'asse <math>U</math>, la forma della curva può essere implicitamente determinata a partire dal periodo <math>T(E)</math> delle oscillazioni con energia totale <math>E</math> secondo l'equazione:
 
:<math>x(U)=\frac{1}{2\pi \sqrt{2m}}\int_0^U\frac{T(E)\,dE}{\sqrt{U-E}}</math>
 
==Bibliografia==
==Vedi anche==
* [[Oscillatore armonico]]
* [[Oscillatore parametrico]]
* [[Risonanza]]
 
{{portale|meccanica}}
{{portale|meccanica|elettromagnetismo|meccanica quantistica}}
 
[[Categoria:Meccanica classica]]
1 211

contributi