Legge dell'inverso del quadrato: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
SanniBot (discussione | contributi)
m fix template References + fix minori
→‎Occurrences: trad+testo nascosto va da un'altra parte
Riga 7:
Una legge dell'inverso del quadrato si applica generalmente quando una forza, energia o altre grandezze conservative è irradiata ugualmente da una [[punto materiale|sorgente puntiforme]] nello [[spazio tridimensionale]]. Poiché la [[superficie]] di una [[sfera]] (che vale <math>4\pi r^2</math>) è proporzionale al quadrato del raggio, man mano la radiazione emessa si allontana dalla sorgente, è diffusa su un'area che aumenta in proporzione col quadrato della distanza dalla sorgente e così l'intensità della grandezza irradiata è inversamente proporzionale al quadrato della distanza dalla sorgente. La [[legge di Gauss]] si applica e può essere usata con ogni grandezza fisica che si comporta secondo una legge dell'inverso del quadrato.
 
==OccurrencesEsempi==
===GravitationGravità===
L'[[interazione gravitazionale]] è una forza di attrazione [[forza conservativa|conservativa]] fra due corpi dotati di massa. La [[legge di gravitazione universale]] spiega, nel modello della [[fisica classica]], come è regolata questa interazione:
[[Gravity|Gravitation]] is the attraction of two objects with mass. This law states:
:''La legge di gravitazione universale afferma che due punti materiali si attraggono con una forza di intensità direttamente proporzionale al prodotto delle masse dei singoli corpi ed inversamente proporzionale al quadrato della loro distanza. Questa forza è sempre attrattiva e si applica lungo la linea congiungente i due punti.''
:''The gravitational attraction force between two '''point masses''' is directly proportional to the product of their masses and inversely proportional to the square of their separation distance. The force is always attractive and acts along the line joining them from their center.
 
Se la distribuzione della massa nei corpi considerati è simmetrica come in una sfera, allora gli oggetti possono essere trattati come punti materiali senza alcuna approssimazione, come dimostrato nel [[teorema del guscio sferico]]. Altrimenti, se vogliamo calcolare l'attrazione gravitazionale fra altri tipi di corpi, dobbiamo addizionare vettorialmente fra loro tutti gli infinitesimi [[campi gravitazionali]] generati da tutti i punti del corpo e la forza di attrazione totale potrebbe non essere esattamente una legge dell'inverso del quadrato. tuttavia, se la distanza fra i due corpi è molto grande rispetto alle loro dimensioni, allora è ragionevole approssimare i corpi a punti materiali calcolando la forza gravitazionale secondo una legge dell'inverso del quadrato.
If the distribution of matter in each body is spherically symmetric, then the objects can be treated as point masses without approximation, as shown in the [[shell theorem]]. Otherwise, if we want to calculate the attraction between massive bodies, we need to add all the point-point attraction forces vectorially and the net attraction might not be exact inverse square. However, if the separation between the massive bodies is much larger compared to their sizes, then to a good approximation, it is reasonable to treat the masses as point mass while calculating the gravitational force.
 
As the law of gravitation, this [[Law of universal gravitation|law]] was suggested in 1645 by [[Ismael Bullialdus]]. But Bullialdus did not accept Kepler’s second and third laws, nor did he appreciate [[Christiaan Huygens]]’s solution for circular motion (motion in a straight line pulled aside by the central force). Indeed, Bullialdus maintained the sun’s force was attractive at aphelion and repulsive at perihelion.[[Robert Hooke]] and [[Giovanni Alfonso Borelli]] both expounded gravitation in 1666 as an attractive force<ref>Hooke's gravitation was also not yet universal, though it approached universality more closely than previous hypotheses: See page 239 in Curtis Wilson (1989), "The Newtonian achievement in astronomy", ch.13 (pages 233–274) in "Planetary astronomy from the Renaissance to the rise of astrophysics: 2A: Tycho Brahe to Newton", CUP 1989.</ref> (Hooke’s lecture “On gravity” at the Royal Society, London, on 21 March; Borelli’s "Theory of the Planets", published later in 1666). Hooke’s 1670 Gresham lecture explained that gravitation applied to “all celestiall bodys” and added the principles that the gravitating power decreases with distance and that in the absence of any such power bodies move in straight lines. By 1679, Hooke thought gravitation had inverse square dependence and communicated this in a letter to [[Isaac Newton]]. Hooke remained bitter even though Newton’s “Principia” acknowledged that Hooke, along with Wren and Halley, had separately appreciated the inverse square law in the solar system,<ref>Newton acknowledged Wren, Hooke and Halley in this connection in the Scholium to Proposition 4 in Book 1 (in all editions): See for example the 1729 English translation of the 'Principia', [http://books.google.com/books?id=Tm0FAAAAQAAJ&pg=PA66#v=onepage&q=&f=false at page 66].</ref> as well as giving some credit to Bullialdus.
 
<!-- As the law of gravitation, this [[Law of universal gravitation|law]] was suggested in 1645 by [[Ismael Bullialdus]]. But Bullialdus did not accept Kepler’s second and third laws, nor did he appreciate [[Christiaan Huygens]]’s solution for circular motion (motion in a straight line pulled aside by the central force). Indeed, Bullialdus maintained the sun’s force was attractive at aphelion and repulsive at perihelion.[[Robert Hooke]] and [[Giovanni Alfonso Borelli]] both expounded gravitation in 1666 as an attractive force<ref>Hooke's gravitation was also not yet universal, though it approached universality more closely than previous hypotheses: See page 239 in Curtis Wilson (1989), "The Newtonian achievement in astronomy", ch.13 (pages 233–274) in "Planetary astronomy from the Renaissance to the rise of astrophysics: 2A: Tycho Brahe to Newton", CUP 1989.</ref> (Hooke’s lecture “On gravity” at the Royal Society, London, on 21 March; Borelli’s "Theory of the Planets", published later in 1666). Hooke’s 1670 Gresham lecture explained that gravitation applied to “all celestiall bodys” and added the principles that the gravitating power decreases with distance and that in the absence of any such power bodies move in straight lines. By 1679, Hooke thought gravitation had inverse square dependence and communicated this in a letter to [[Isaac Newton]]. Hooke remained bitter even though Newton’s “Principia” acknowledged that Hooke, along with Wren and Halley, had separately appreciated the inverse square law in the solar system,<ref>Newton acknowledged Wren, Hooke and Halley in this connection in the Scholium to Proposition 4 in Book 1 (in all editions): See for example the 1729 English translation of the 'Principia', [http://books.google.com/books?id=Tm0FAAAAQAAJ&pg=PA66#v=onepage&q=&f=false at page 66].</ref> as well as giving some credit to Bullialdus.
-->
===Electrostatics===
The force of attraction or repulsion between two electrically charged particles, in addition to being directly proportional to the product of the electric charges, is inversely proportional to the square of the distance between them; this is known as [[Coulomb's law]]. The deviation of the exponent from 2 is less than one part in 10<sup>15</sup>.<ref>{{citation | last=Williams, Faller, Hill |title=New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass |page=721