Intelligenza artificiale: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Archive.today domain not accessible from Italy (x1)) #IABot (v2.0.9.5) (GreenC bot
Eliminati testi senza fonti
Riga 5:
== Definizione ==
La norma [[Organizzazione internazionale per la normazione|ISO]]/[[International Electrotechnical Commission|IEC]] 42001:2023 ''Information technology - Artificial intelligence Management System'' (AIMS) definisce l'intelligenza artificiale come ''la capacità di un sistema<ref>Ovvero [[sistema informatico]].</ref> di mostrare capacità umane quali il ragionamento, l'apprendimento, la pianificazione e la creatività''.
 
== Storia ==
=== Tradizione di ricerca ===
Molteplici furono i passi che portarono alla nascita di questa disciplina. Il primo, sia a livello di importanza sia di ordine cronologico, è l'avvento dei calcolatori e il continuo interesse rivolto a essi. Già nel 1623, grazie a [[Wilhelm Schickard]], si arrivò a creare macchine in grado di effettuare calcoli matematici con numeri fino a sei cifre, anche se non in maniera autonoma. Nel 1642 [[Blaise Pascal]] costruì una macchina in grado di fare operazioni utilizzando il riporto automatico, mentre nel 1674 [[Gottfried Wilhelm von Leibniz]] creò una macchina in grado di effettuare la somma, la differenza e la moltiplicazione in maniera ricorsiva. Tra il 1834 e il 1837 [[Charles Babbage]] lavorò al modello di una macchina chiamata ''[[macchina analitica]]'', le cui caratteristiche anticiparono in parte quelle dei moderni calcolatori. Nel ventesimo secolo l'attenzione sui computer ritornò ad accendersi: nel 1937, ad esempio, [[Claude Shannon]], all'università di Yale, mostrò come l'algebra booleana e le operazioni binarie potessero rappresentare il cambiamento circuitale e l'inizio dell'innovazione digitale nelle reti di telecomunicazione.
 
Un ulteriore passo importante fu l'articolo di [[Alan Turing]] redatto nel 1936, ''On Computable Numbers, With An Application To The Entscheidungsproblem''<ref>{{cita web |url=https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf|titolo= ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM}}</ref>, che pone le basi per concetti quali [[calcolabilità]], [[computabilità]], [[macchina di Turing]], definizioni cardine per i calcolatori sino ai giorni nostri. In seguito, nel 1943 McCulloch e Pitts crearono ciò che viene ritenuto il primo lavoro inerente all'intelligenza artificiale<ref>{{cita web |url=http://www.minicomplexity.org/pubs/1943-mcculloch-pitts-bmb.pdf |titolo=A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY |accesso=14 dicembre 2016 |urlmorto=sì |urlarchivio=https://web.archive.org/web/20170210153819/http://www.minicomplexity.org/pubs/1943-mcculloch-pitts-bmb.pdf }}</ref>. Tale sistema impiega un modello di neuroni artificiali nel quale lo stato di tali neuroni può essere “acceso” o “spento,” con un passaggio ad “acceso” in presenza di stimoli causati da un numero sufficiente di neuroni circostanti.
 
McCulloch e Pitts arrivarono quindi a mostrare, ad esempio, che qualsiasi funzione computabile può essere rappresentata da qualche rete di neuroni, e che tutti i connettivi logici (“e”, “o”, ...) possono essere implementati da una semplice struttura neurale.
Sette anni più tardi, nel 1950, due studenti dell'università di Harvard, [[Marvin Minsky]] e Dean Edmonds, crearono quella che viene riconosciuta come la prima [[rete neurale artificiale]], conosciuta con il nome di [[SNARC]].
 
=== La nascita effettiva della disciplina (1956) ===
Nel 1956, nel [[New Hampshire]], al [[Dartmouth College]], si tenne un convegno al quale presero parte alcune delle figure di spicco del nascente campo della computazione dedicata allo sviluppo di sistemi intelligenti: [[John McCarthy]], [[Marvin Minsky]], [[Claude Shannon]] e [[Nathaniel Rochester]]. Su iniziativa di McCarthy, un team di dieci persone avrebbe dovuto creare in due mesi una macchina in grado di simulare ogni aspetto dell'apprendimento e dell'intelligenza umana. Ad aderire a tale iniziativa furono alcuni ricercatori, tra cui anche Trenchard More di [[Princeton]], [[Arthur Samuel]] di [[IBM]], e Ray Solomonoff e Oliver Selfridge del [[Massachusetts Institute of Technology|MIT]]. Nello stesso convegno, un'altra iniziativa catalizzò l'attenzione oltre al progetto di McCarthy: il programma di [[Allen Newell]] e [[Herbert Simon]]. Questi due ricercatori, a differenza di McCarthy, avevano già un programma capace di qualche forma di ragionamento, conosciuto con il nome di ''Logic Theorist'', o LP, in grado di dimostrare teoremi partendo dai principi della matematica. Sempre nello stesso convegno, McCarthy introdusse l'espressione ''intelligenza artificiale'', che segnò, in maniera indelebile, la nascita ''effettiva'' di tale disciplina, conferendole una natura propria.
 
=== Prime grandi aspettative (1950-1965) ===
Il programma creato da Newell e Simon permise loro di progredire e creare un programma chiamato ''General Problem Solver'', o GPS. A differenza del LP, il GPS fu ideato con lo scopo di imitare i processi di risoluzione dei problemi utilizzati dagli esseri umani (nello specifico la cosiddetta "euristica mezzi-fini"<ref name="ReferenceA">{{Cita libro|cognome=Lieto|nome=Antonio|titolo=Cognitive Design for Artificial Minds|anno=2021|città=London, UK |editore=Routledge, Taylor & Francis | isbn=978-1-138-20792-9|lingua=en}}</ref>). Nei ristretti casi nel quale il programma poteva operare, si notò che l'approccio con il quale il programma considerava gli obiettivi e le azioni era assimilabile a un umano. Negli stessi anni, presso l'IBM, Rochester con dei suoi colleghi cominciò a sviluppare altri programmi capaci di ragionamento.
 
Nel 1959, Herbert Gelemter creò il ''Geometry Theorem Prover'', un programma in grado di dimostrare teoremi di geometria complessi.
L'anno precedente, presso il MIT, McCarthy diede un altro contributo al campo dell'intelligenza artificiale definendo quello che per trent'anni fu riconosciuto come il linguaggio di programmazione dominante per la realizzazione dei sistemi di intelligenza artificiale: il [[Lisp]]. Oltre a ciò, McCarthy scrisse un documento intitolato ''Programs with Common Sense''<ref>{{Cita web|url=https://www.cs.cornell.edu/selman/cs672/readings/mccarthy-upd.pdf|titolo= Programs with Common Sense|lingua=en}}</ref>, nel quale descrive un programma ideale, chiamato ''Advice Taker'', che può essere visto come il primo sistema intelligente completo. <!-- Non confermato -->
 
Minsky, durante il suo periodo al MIT, coordinò la creazione di programmi per affrontare quelli che vengono chiamati ''micro mondi'', ovvero problemi limitati e descritti da asserzioni che richiedevano l'utilizzo di ragionamento per essere risolti. Tra questi, il programma di James Slagle del 1963, SAINT, era in grado di risolvere problemi riguardo al calcolo integrale in forma chiusa, tipici del primo anno del college.
 
=== Prime difficoltà (1966-1969) ===
Tra le varie aspirazioni da parte dei ricercatori vi era principalmente quella di creare macchine in grado di esibire capacità di ragionamento simili a quelle umane. Ad esempio, [[Herbert Simon]], nel 1957, stimò che nel giro di dieci anni ci sarebbero state macchine in grado di competere con i campioni di scacchi (previsione che si avvererà, ma dopo quarant'anni). Queste aspirazioni, però, dovettero scontrarsi con alcune difficoltà: prime fra tutte, l’assoluta mancanza di conoscenza semantica relativa ai domini trattati dalle macchine, in quanto la loro capacità di ragionamento si limitava a una vera manipolazione sintattica. A causa di questa difficoltà, nel 1966 il governo degli Stati Uniti d'America interruppe i fondi per lo sviluppo delle macchine traduttrici. Un ulteriore problema fu l'impossibilità del trattare molti problemi che l'intelligenza artificiale si era proposta. Questo perché si riteneva che “scalare” le dimensioni di un problema fosse solo una questione di hardware e memoria.
 
Questo tipo di ottimismo fu presto spento quando i ricercatori fallirono nel dimostrare teoremi a partire da più di una dozzina di assiomi. Si capì quindi che il fatto di disporre di un algoritmo che, a livello teorico, fosse in grado di trovare una soluzione a un problema non significava che un corrispondente programma fosse in grado di calcolarla effettivamente a livello pratico. Un terzo tipo di difficoltà furono le limitazioni alla base della logica, nel senso di ragionamento, dei calcolatori. Nel documento di Minsky e Papert, intitolato ''Perceptrons'' (1969), si mostrò che, nonostante un [[percettrone]] (una semplice forma di rete neurale) fosse in grado di apprendere qualsiasi funzione potesse rappresentare, un [[percettrone]] con due input non era in grado di rappresentare una funzione che riconoscesse quando i due input sono diversi.
 
=== Sistemi basati sulla conoscenza (1969-1979) ===
Queste difficoltà portarono a definire gli approcci adottati dalle macchine come ''approcci deboli'', che necessitavano quindi di una conoscenza maggiore inerente al campo di applicazione. Nel 1969, grazie a Ed Feigenbaum (studente di [[Herbert Simon]]), Bruce Buchanam e [[Joshua Lederberg]], venne creato il programma DENDRAL. Tale programma era in grado, a partire dalle informazioni sulla massa molecolare ricavate da uno spettrometro, di ricostruire la struttura di una molecola.
Questo programma fu quindi il primo dei sistemi basati su un uso intensivo della conoscenza, che arrivarono più tardi a inglobare tutti i concetti teorizzati da McCarthy per l{{'}}''Advice Taker''. Successivamente, Feigenbaum cominciò insieme con altri ricercatori di Stanford l{{'}}''Heuristic Program Project'' ([[HPP]]), al fine di estendere gli scenari applicativi di questi sistemi, cominciando con il sistema MYCIN nell'ambito delle diagnosi delle infezioni sanguigne. Si cominciò quindi a teorizzare dei sistemi conosciuti come ''sistemi esperti'', ovvero in grado di possedere una conoscenza esperta in un determinato scenario di applicazione. Si trattava di sistemi in cui l’uomo trasferiva direttamente la propria conoscenza alla macchina, stabilendo mediante regole logiche quali fossero le scelte da prendere in determinati contesti.<ref>{{cita web|url=https://www.corrieredellacalabria.it/2024/01/05/cosi-lintelligenza-artificiale-rivoluziona-il-settore-medico-sanitario-calabrese/|titolo=Intervista a Gianluigi Greco}}</ref>
 
=== Dall'ambiente accademico all'industria (1980-1985) ===
Il primo sistema di intelligenza artificiale utilizzato in ambito commerciale fu R1, utilizzato dalla Digital Equipment nel 1982. Lo scopo del programma era quello di aiutare a configurare gli ordini per nuovi computer. Nel 1986, fu in grado di far risparmiare alla compagnia 40 milioni di dollari all'anno. Anche la [[DuPont]] utilizzò sistemi simili, risparmiando circa dieci milioni di dollari all'anno. Negli anni '80 dello scorso secolo, quasi ogni grande azienda americana aveva un proprio sistema esperto in operazione e stava studiando sistemi più avanzati.
Nel 1981 in [[Giappone]] venne annunciato il progetto ''Fifth Generation'', un piano di dieci anni con l'intento di costruire sistemi intelligenti basati su [[Prolog]]. In risposta, gli [[Stati Uniti d'America]] crearono la ''Microelectronics and Computer Technology Corporation'' (MCC), come consorzio di ricerca al fine di garantire la competitività a livello nazionale. In Inghilterra, il rapporto Alvey recuperò i fondi tagliati dal rapporto Lighthill, che nel 1973 portò il governo britannico alla decisione di interrompere il supporto verso la ricerca nell'ambito dell'intelligenza artificiale. Questi progetti però non raggiunsero gli scopi previsti.
L'industria dell'intelligenza artificiale raggiunse nel 1988 una cifra dell'ordine di miliardi di dollari, includendo centinaia di aziende che stavano creando sistemi esperti, robot e software e hardware specializzati in questi settori.
 
=== Il ritorno delle reti neurali (1986-) ===
A metà degli anni ottanta dello scorso secolo fu reinventato l'algoritmo di apprendimento per reti neurali chiamato ''back-propagation'', inizialmente ideato nel 1969 da Bryson e Ho. L'algoritmo fu applicato a molti problemi relativi all'apprendimento, inerenti sia al lato dell'informatica sia a quello della psicologia.
I cosiddetti modelli "connessionisti" per la realizzazione di sistemi intelligenti furono visti come alternative ai modelli simbolici ideati da Newell e Simon, da McCarthy e dai loro collaboratori.
Tali modelli cercarono di dare risposta a quelle domande alle quali i precedenti modelli non erano riusciti, ma in parte fallirono anch'essi. Di conseguenza, i modelli basati sull'approccio simbolico e quelli con un approccio connessionista furono visti come complementari.
 
=== L'intelligenza artificiale moderna (1986-) ===
Oggigiorno i sistemi intelligenti sono presenti in ogni campo, anche nelle attività quotidiane e primeggiano nei giochi, come teorizzato anni prima dagli esponenti dell'intelligenza artificiale.
Vi sono programmi che sono stati in grado di confrontarsi con campioni di [[scacchi]], quali [[IBM Deep Blue|Deep Blue]]; altri che sono stati impiegati nelle missioni spaziali, come nel 1998 quando la [[NASA]] utilizzò un programma chiamato ''Remote Agent'' in grado di gestire le attività relative a un sistema spaziale; alcune auto sono oggi dotate di un sistema in grado di guidarle senza l'uso di un conducente umano, quindi in maniera del tutto autonoma.
Nell'ambito di scenari più quotidiani si pensi, invece, ai termostati per il riscaldamento e l'aria condizionata in grado di anticipare il cambio di temperatura, gestire i bisogni degli abitanti e di interagire con altri dispositivi. In campo economico, particolarmente sensibile al cambiamento è il [[tasso di occupazione]] in generale,<ref>{{cita web|autore=Eugenio Occorsio|url=https://www.repubblica.it/economia/affari-e-finanza/2017/06/05/news/intelligenza_artificiale_e_big_data_cos_i_robot_cambiano_il_lavoro-167368747/|titolo=Intelligenza artificiale e Big Data. Così i robot cambiano il lavoro|editore=repubblica.it|data=5 giugno 2017|accesso=6 ottobre 2019}}</ref> come nella [[tecnofinanza]] dove avviene la più profonda rivoluzione.<ref>{{cita web|autore=Marco Ciotola|url=https://www.money.it/Intelligenza-artificiale-rivoluzione-finanza|titolo=5 modi in cui l'intelligenza artificiale sta rivoluzionando la finanza|editore=money.it|data=7 aprile 2018|accesso=6 ottobre 2019}}</ref><ref>{{cita web|autore=Alessandra Caparello|url=https://www.wallstreetitalia.com/fintech-e-intelligenza-artificiale-come-cambia-la-finanza/|titolo=FinTech e Intelligenza Artificiale: come cambia la finanza|editore=wallstreetitalia.com|data=13 dicembre 2018|accesso=6 ottobre 2019}}</ref><ref>{{cita web|autore=Riccardo Barlaam|url=https://www.ilsole24ore.com/art/la-rivoluzione-robot-tagliera-200mila-posti-banche-usa-ACwGXjo|titolo=La rivoluzione dei robot taglierà 200mila posti nelle banche Usa|editore=ilsole24ore.com|data=5 ottobre 2019|accesso=6 ottobre 2019}}</ref>
 
=== Utilizzo di Python ===
Il linguaggio di programmazione più diffuso nell'ambito della ricerca e dello sviluppo di sistemi di intelligenza artificiale è [[Python]]. Grazie alla sua semplice sintassi, questo linguaggio consente una rapida prototipazione delle reti neurali, facendo così risparmiare tempo ai ricercatori. Questo è un aspetto molto importante perché tipicamente le reti neurali richiedono molto tempo per essere allenate (da qualche ora, fino a qualche giorno o settimana).
 
Originariamente Python non è stato progettato per essere efficiente, ma grazie a Cython è stato possibile implementare librerie in grado di eseguire codice direttamente in C. Siccome le operazioni svolte tra i dati in input ai modelli di intelligenza artificiale, e i relativi parametri, sono spesso delle operazioni tra tensori (ad esempio prodotti tra tensori), è emerso che l'impiego di [[GPU]] per l'allenamento di questi modelli è molto vantaggioso, e di conseguenza sono nati frameworks come PyTorch o Tensorflow. Questi frameworks, importati in Python come librerie, consentono la realizzazione, l'allenamento e l'inferenza di modelli di intelligenza artificiale, fornendo la possibilità di eseguire tali modelli su [[CPU]], GPU, o eventualmente anche [[Tensor Processing Unit|TPU]].
 
=== Principi di Asilomar ===