Differenze tra le versioni di "Teorema fondamentale del calcolo integrale"

(→‎Corollario del primo teorema: Eliminati passaggi superflui e variazioni minori)
Etichette: Modifica da mobile Modifica da web per mobile
(→‎Relazione fra i due teoremi: Aggiunto un esempio)
Etichette: Modifica da mobile Modifica da web per mobile
 
Viceversa il primo teorema fondamentale del calcolo ha un ipotesi in più del secondo (la continuità di <math>f</math>), dunque questo non può seguire (nel suo caso generale) dall'altro.
 
Facendo un esempio concreto, la ''formula fondamentale del calcolo'', usando solo il primo teorema, non si potrebbe applicare a
:<math>
f(x)=
\begin{cases}
\sin{\frac{1}{x}}\ \ \ \ \textrm{se } \ x\ne 0\\
0\ \ \ \ \ \ \ \ \ \ \ \textrm{se }\ x=0
\end{cases}
</math>
che ammette primitiva ma è discontinua in <math>0</math>, mentre è ancora valida per il secondo teorema.
 
== Teorema fondamentale del calcolo integrale di Lebesgue ==
218

contributi