Swift Gamma Ray Burst Explorer: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Corretto wikilink
Recupero di 1 fonte/i e segnalazione di 0 link interrotto/i. #IABot (v1.6.5)
Riga 30:
* XRT (X-ray Telescope, letteralmente ''Telescopio a [[raggi X]]'')<ref>[http://swift.sonoma.edu/about_swift/general_faq.html#xray_specs Le specifiche di XRT dal sito ufficiale].</ref>: utilizza un [[telescopio Wolter|telescopio Wolter di tipo I]] ed è abbinato ad un sensore (di tipo [[Dispositivo ad accoppiamento di carica|CCD]]) per [[fotone|fotoni]] di energia compresa tra 0,2 e 10 [[Elettronvolt|keV]]. Il campo di vista di XRT è di circa 25 [[Primo (geometria)|arcominuti]]. La focalizzazione dei [[fotone|fotoni]] permette ad XRT di migliorare la localizzazione della sorgente individuata da BAT arrivando ad un'incertezza di 3,6 [[Secondo (geometria)|arcosecondi]]. Oltre a migliorare la localizzazione del transiente, questo strumento molto sensibile permette di analizzare lo spettro del transiente o dell'emissione residua dei GRB (detta afterglow), la cui durata può protrarsi per giorni o settimane.
* UVOT (Ultraviolet/Optical Telescope, letteralmente ''Telescopio ultravioletto/ottico'')<ref>[http://swift.sonoma.edu/about_swift/general_faq.html#uv/opt_specs Le specifiche di UVOT dal sito ufficiale].</ref>: si tratta di un telescopio realizzato con una configurazione [[Ritchey-Chrétien]] modificata e con uno specchio primario da 30&nbsp;cm. Il campo di vista UVOT è di circa 17 [[Primo (geometria)|arcominuti]]. È sensibile nelle [[lunghezza d'onda]] dal visibile all'[[ultravioletto]] (170&nbsp;– 600&nbsp;nm). Nonostante le dimensioni modeste dello specchio, il vantaggio di operare al di fuori del grosso dell'[[atmosfera]] terrestre gli consente di avere un'ottima sensibilità (paragonabile a quella di un telescopio da 4&nbsp;m sulla Terra) e di raggiungere una risoluzione inferiore all'[[Secondo (geometria)|arcosecondo]].
Questi tre strumenti sono stati progettati in funzione della sofisticata strategia osservativa di Swift. Swift infatti pattuglia il cielo con BAT, lo strumento a grande campo di vista, osservandone il 50-80% ogni giorno alla ricerca di [[lampo gamma|lampi gamma]]. Quando un lampo viene avvistato da BAT, il sistema di controllo automatico permette di inquadrare rapidamente la regione del lampo anche con XRT ed UVOT, strumenti molto sensibili, ma dal campo di vista più piccolo. Entro 20 secondi dalla rilevazione di BAT, inizia il ripuntamento, che si completa generalmente entro pochi minuti. Così XRT ed UVOT iniziano a raccogliere informazioni sul lampo entro qualche minuto dal rilevamento iniziale.<ref>[http://swift.gsfc.nasa.gov/docs/swift/about_swift/factsheet.pdf Opuscolo divulgativo di Swift] {{webarchive|url=https://web.archive.org/web/20090321085529/http://swift.gsfc.nasa.gov/docs/swift/about_swift/factsheet.pdf |data=21 marzo 2009 }}.</ref><ref>[http://www.swift.ac.uk/aboutswift.shtml Schema del funzionamento del sistema di autocorrezione del puntamento].</ref>
Questa rapidità, che sarebbe difficile da raggiungere se fosse necessario un intervento umano, consente sia di ottenere rapidamente posizioni via via più precise, utili per puntare altri strumenti, sia di raccogliere preziose informazioni sul lampo in diverse bande energetiche sin dai primi istanti del fenomeno.
== Contributo italiano ==