Ordine
Gruppo canonico
Gruppi di simmetria molecolare
Altri gruppi
1
G1 1 = Z1
2
G2 1 = Z2 = Sym2
C i
E
i
Ag
1
1
Rx , Ry , Rz
x 2 , y 2 , z 2 , xy, xz, yz
Au
1
-1
x , y , z
C s
E
σ h
A'
1
1
x, y, Rz
x 2 , y 2 , z 2 , xy
A''
1
-1
z, Rx , Ry
xz , yz
C 2
E
c 2
A
1
1
Rz , z
x 2 , y 2 , z 2 , xy
B
1
-1
Rx , Ry , x , y
xz , yz
Z3 × ; Z4 × ; Z6 ×
3
G3 1 = Z3 = Alt3
C 3
E
C 3
C 3 2
A
1
1
1
Rz , z
x 2 + y 2
E
1
1
ω
ω*
ω*
ω
(Rx , Ry ),
(x , y )
(x 2 - y 2 , xy ),
(xz , yz )
ω = e2πi/3
---
4
G4 1 = Z4
C 4
E
C 4
C 2
C 4 3
A
1
1
1
1
Rz , z
x2 + y2 , z2
B
1
−1
1
−1
x2 − y2 , xy
E
1
1
i
−i
−1
−1
−i
i
(Rx , Ry ),
(x, y )
(xz, yz)
S 4
E
S 4
C 2
S 4 3
A
1
1
1
1
Rz
x 2 +y 2 , z 2
B
1
−1
1
−1
z
x 2 −y 2 , xy
E
1
1
i
−i
−1
−1
−i
i
(Rx , Ry ),
(x , y )
(xz , yz )
Z5 × ; Z10 ×
4
G4 2 = Dih2 = Z2 × Z2
D 2
E
C 2 (z )
C 2 (x )
C 2 (y )
A
1
1
1
1
x 2 , y 2 , z 2
B1
1
1
−1
−1
Rz , z
xy
B2
1
−1
−1
1
Ry , y
xz
B3
1
−1
1
−1
Rx , x
yz
C 2v
E
C 2
σ v
σ v '
A1
1
1
1
1
z
x 2 , y 2 , z 2
A2
1
1
−1
−1
Rz
xy
B1
1
−1
1
−1
Ry , x
xz
B2
1
−1
−1
1
Rx , y
yz
C 2h
E
C 2
i
σ h
Ag
1
1
1
1
Rz
x 2 , y 2 , z 2 , xy
Au
1
1
−1
−1
z
Bg
1
−1
1
−1
Rx , Ry
xz, yz
Bu
1
−1
−1
1
x, y
Z8 × ; Z12 ×
5
G5 1 = Z5
C 5
E
C 5
C 5 2
C 5 3
C 5 4
A
1
1
1
1
1
Rz , z
x 2 + y 2 , z 2
E1
1
1
η
η*
η2
η2*
η2*
η2
η*
η
(Rx , Ry ),
(x , y )
(xz , yz )
E2
1
1
η2
η2*
η*
η
η
η*
η2*
η2
(x 2 - y 2 , xy )
η = e2πi/5
---
6
G6 1 = Sym3 = Dih3
D 3
E
2 C 3
3 C 2 '
A1
1
1
1
x 2 + y 2 , z 2
A2
1
1
−1
Rz , z
E
2
−1
0
(Rx , Ry ), (x , y )
(x 2 − y 2 , xy ), (xz , yz )
C 3v
E
2 C 3
3 σ v
A1
1
1
1
z
x 2 + y 2 , z 2
A2
1
1
−1
Rz
E
2
−1
0
(Rx , Ry ), (x , y )
(x 2 − y 2 , xy ), (xz , yz )
---
6
G6 2 = Z6 = Z3 ×Z2
C 6
E
C 6
C 3
C 2
C 3 2
C 6 5
A
1
1
1
1
1
1
Rz , z
x 2 + y 2 , z 2
B
1
−1
1
−1
1
−1
E1
1
1
ζ
ζ*
−ζ*
−ζ
−1
−1
−ζ
−ζ*
ζ*
−ζ
(Rx , Ry ),
(x , y )
(xz , yz )
E2
1
1
−ζ*
−ζ
−ζ
−ζ*
1
1
−ζ*
−ζ
−ζ
−ζ*
(x 2 − y 2 , xy )
S 6
E
S 6
C 3
i
C 3 2
S 6 5
Ag
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
Eg
1
1
ζ*
ζ
ζ
ζ*
1
1
ζ*
ζ
ζ
ζ*
(Rx , Ry )
(x 2 − y 2 , xy ), (xz , yz )
Au
1
−1
1
−1
1
−1
z
Eu
1
1
−ζ*
−ζ
ζ
ζ*
−1
−1
ζ*
ζ
−ζ
−ζ*
(x , y )
C 3h
E
C 3
C 3 2
σ h
S 3
S 3 5
A'
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
E'
1
1
ω
ω*
ω*
ω
1
1
ω
ω*
ω*
ω
(x , y )
(x 2 − y 2 , xy )
A''
1
1
1
−1
−1
−1
z
E''
1
1
ω
ω*
ω*
ω
−1
−1
−ω
−ω*
−ω*
−ω
(Rx , Ry )
(xz , yz )
ω = e 2πi/3
ζ = e 2πi/6
Z7 × ; Z9 × ; Z14 × ; Z18 ×
7
G7 1 = Z7
---
---
8
G8 1 = Z8
C 8
E
C 8
C 4
C 8 3
C 2
C 8 5
C 4 3
C 8 7
!
A
1
1
1
1
1
1
1
1
Rz , z
x 2 + y 2 , z 2
B
1
−1
1
−1
1
−1
1
−1
E1
1
1
λ
λ*
i
−i
−λ*
−λ
−1
−1
−λ
−λ*
−i
i
λ*
λ
(Rx , Ry ),
(x , y )
(xz , yz )
E2
1
1
i
−i
−1
−1
−i
i
1
1
i
−i
−1
−1
−i
i
(x 2 − y 2 , xy )
E3
1
1
−λ
−λ*
i
−i
λ*
λ
−1
−1
λ
λ*
−i
i
−λ*
−λ
S 8
E
S 8
C 4
S 8 3
i
S 8 5
C 4 2
S 8 7
A
1
1
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
B
1
−1
1
−1
1
−1
1
−1
z
E1
1
1
λ
λ*
i
−i
−λ*
−λ
−1
−1
−λ
−λ*
−i
i
λ*
λ
(x , y )
(xz , yz )
E2
1
1
i
−i
−1
−1
−i
i
1
1
i
−i
−1
−1
−i
i
(x 2 − y 2 , xy )
E3
1
1
−λ*
−λ
−i
i
λ
λ*
−1
−1
λ*
λ
i
−i
−λ
−λ*
(Rx , Ry )
(xz , yz )
λ = e 2πi/8 = (1+i)/√2
---
8
G8 2 = Z2 × Z4
C 4h
E
C 4
C 2
C 4 3
i
S 4 3
σ h
S 4
Ag
1
1
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
Bg
1
−1
1
−1
1
−1
1
−1
x 2 − y 2 , xy
Eg
1
1
i
−i
−1
−1
−i
i
1
1
i
−i
−1
−1
−i
i
(Rx , Ry )
(xz , yz )
Au
1
1
1
1
−1
−1
−1
−1
z
Bu
1
−1
1
−1
−1
1
−1
1
Eu
1
1
i
−i
−1
−1
−i
i
−1
−1
−i
i
1
1
i
−i
(x , y )
Z15 × ; Z16 × ; Z20 × ; Z30 ×
8
G8 3 = Dih4
D 4
E
2 C 4
C 2
2 C 2 '
2 C 2 "
A1
1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
−1
−1
Rz , z
B1
1
−1
1
1
−1
x 2 − y 2
B2
1
−1
1
−1
1
xy
E
2
0
−2
0
0
(Rx , Ry ), (x , y )
(xz , yz )
C 4v
E
2 C 4
C 2
2 σ v
2 σ d
A1
1
1
1
1
1
z
x 2 + y 2 , z 2
A2
1
1
1
−1
−1
Rz
B1
1
−1
1
1
−1
x 2 − y 2
B2
1
−1
1
−1
1
xy
E
2
0
−2
0
0
(Rx , Ry ), (x, y)
(xz, yz)
D 2d
E
2 S 4
C 2
2 C 2 '
2 σ d
A1
1
1
1
1
1
x 2 , y 2 , z 2
A2
1
1
1
−1
−1
Rz
B1
1
−1
1
1
−1
x 2 − y 2
B2
1
−1
1
−1
1
z
xy
E
2
0
−2
0
0
(Rx , Ry ), (x , y )
(xz , yz )
---
8
G8 4 = Dic2 = Q8
---
---
8
G8 5 = Z2 3
D 2h
E
C 2
C 2 (x )
C 2 (y )
i
σ (xy )
σ (xz )
σ (yz )
Ag
1
1
1
1
1
1
1
1
x 2 , y 2 , z 2
B1g
1
1
−1
−1
1
1
−1
−1
Rz
xy
B2g
1
−1
−1
1
1
−1
1
−1
Ry
xz
B3g
1
−1
1
−1
1
−1
−1
1
Rx
yz
Au
1
1
1
1
−1
−1
−1
−1
B1u
1
1
−1
−1
−1
−1
1
1
z
B2u
1
−1
−1
1
−1
1
−1
1
y
B3u
1
−1
1
−1
−1
1
1
−1
x
Z24 ×
9
G9 1 = Z9
---
---
9
G9 2 = Z3 2
---
---
10
G10 1 = Dih5
D 5
E
2 C 5
2 C 5 2
5 C 2
A1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
−1
Rz , z
E1
2
2 cos 2π/5
2 cos 4π/5
(Rx , Ry ), (x , y )
(xz , yz )
E2
2
2 cos 4π/5
2 cos 2π/5
0
(x 2 − y 2 , xy )
C 5v
E
2 C 5
2 C 5 2
5 σ v
A1
1
1
1
1
z
x 2 + y 2 , z 2
A2
1
1
1
−1
Rz
E1
2
2 cos 2π/5
2 cos 4π/5
0
(Rx , Ry ), (x , y )
(xz , yz )
E2
2
2 cos 4π/5
2 cos 2π/5
0
(x 2 − y 2 , xy )
---
10
G10 2 = Z10 = Z5 × Z2
C 5h
E
C 5
C 5 2
C 5 3
C 5 4
σh
S 5
S 5 7
S 5 3
S 5 9
A'
1
1
1
1
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
E1 '
1
1
η
η*
η2
η2*
η2*
η2
η*
η
1
1
η
η*
η2
η2*
η2*
η2
η*
η
(x , y )
E2 '
1
1
η2
η2*
η*
η
η
η*
η2*
η2
1
1
η2
η2*
η*
η
η
η*
η2*
η2
(x 2 - y 2 , xy )
A''
1
1
1
1
1
−1
−1
−1
−1
−1
z
E1 ''
1
1
η
η*
η2
η2*
η2*
η2
η*
η
−1
−1
−η
−η*
−η2
−η2*
−η2*
−η2
−η*
−η
(Rx , Ry )
(xz , yz )
E2 ''
1
1
η2
η2*
η*
η
η
η*
η2*
η2
−1
−1
−η2
−η2*
−η*
−η
−η
−η*
−η2*
−η2
S 10
E
C 5
C 5 2
C 5 3
C 5 4
σ h
S 5
S 5 7
S 5 3
S 5 9
A'
1
1
1
1
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
E1 '
1
1
η
η*
η2
η2*
η2*
η2
η*
η
1
1
η
η*
η2
η2*
η2*
η2
η*
η
(x , y )
E2 '
1
1
η2
η2*
η*
η
η
η*
η2*
η2
1
1
η2
η2*
η*
η
η
η*
η2*
η2
(x 2 - y 2 , xy )
A''
1
1
1
1
1
−1
−1
−1
−1
−1
z
E1 ''
1
1
η
η*
η2
η2*
η2*
η2
η*
η
−1
−1
−η
-η*
−η2
−η2*
−η2*
−η2
−η*
−η
(Rx , Ry )
(xz , yz )
E2 ''
1
1
η2
η2*
η*
η
η
η*
η2*
η2
−1
−1
−η2
−η2*
−η*
−η
−η
−η*
−η2*
−η2
η = e2πi/5
C 10 ;
Z10 × ; Z22 ×
11
G11 1 = Z11
---
---
12
G12 1 = Dic3 = Q12
---
---
12
G12 2 = Z12 = Z4 × Z3
---
---
12
G12 3 = Alt4
T
E
4 C 3
4 C 3 2
3 C 2
A
1
1
1
1
x 2 + y 2 + z 2
E
1
1
ω
ω*
ω*
ω
1
1
(2 z 2 − x 2 − y 2 ,
x 2 − y 2 )
T
3
0
0
−1
(Rx , Ry , Rz ),
(x , y , z )
(xy , xz , yz )
ω = e2πi/3
12
G12 4 = Dih6 = Dih3 × Z2
D 6
E
2 C 6
2 C 3
C 2
3 C 2 '
3 C 2 "
A1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
1
−1
−1
Rz , z
B1
1
−1
1
−1
1
−1
B2
1
−1
1
−1
−1
1
E1
2
1
−1
−2
0
0
(Rx , Ry ), (x , y )
(xz , yz )
E2
2
−1
−1
2
0
0
(x 2 − y 2 , xy )
C 6v
E
2 C 6
2 C 3
C 2
3 σ v
3 σ d
A1
1
1
1
1
1
1
z
x 2 + y 2 , z 2
A2
1
1
1
1
−1
−1
Rz
B1
1
−1
1
−1
1
−1
B2
1
−1
1
−1
−1
1
E1
2
1
−1
−2
0
0
(Rx , Ry ), (x , y )
(xz , yz )
E2
2
−1
−1
2
0
0
(x 2 − y 2 , xy )
D 3h
E
2 C 3
3 C 2 '
σ h
2 S 3
3 σ v
A1 '
1
1
1
1
1
1
x 2 + y 2 , z 2
A1 ''
1
1
1
−1
−1
−1
A2 '
1
1
−1
1
1
−1
Rz
A2 ''
1
1
−1
−1
−1
1
z
E'
2
−1
0
2
−1
0
(x , y )
(x 2 − y 2 , xy )
E''
2
−1
0
−2
1
0
(Rx , Ry )
(xz , yz )
D 3d
E
2 C 3
3 C 2 '
i
2 S 6
3 σ d
A1g
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
−1
1
1
−1
Rz
A1u
1
1
1
−1
−1
−1
A2u
1
1
−1
−1
−1
1
z
Eg
2
−1
0
2
−1
0
(Rx , Ry )
(x 2 − y 2 , xy ), (xz , yz )
Eu
2
−1
0
−2
1
0
(x , y )
12
G12 5 = Z6 × Z2 = Z3 × Z2 2 = Z3 × Dih2
C 6h
E
C 6
C 3
C 2
C 3 2
C 6 5
i
S 3 5
S 6 5
σ h
S 6
S 3
Ag
1
1
1
1
1
1
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
Bg
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
E1g
1
1
ζ
ζ*
−ζ*
−ζ
−1
−1
−ζ
−ζ*
ζ*
ζ
1
1
ζ
ζ*
−ζ*
−ζ
−1
−1
−ζ
−ζ*
ζ*
ζ
(Rx , Ry )
(xz , yz )
E2g
1
1
−ζ*
−ζ
−ζ
−ζ*
1
1
−ζ*
−ζ
−ζ
−ζ*
1
1
−ζ*
−ζ
−ζ
−ζ*
1
1
−ζ*
−ζ
−ζ
−ζ*
(x 2 − y 2 , xy )
Au
1
1
1
1
1
1
−1
−1
−1
−1
−1
−1
z
Bu
1
−1
1
−1
1
−1
−1
1
−1
1
−1
1
E1u
1
1
ζ
ζ*
−ζ*
−ζ
−1
−1
−ζ
−ζ*
ζ*
ζ
−1
−1
−ζ
−ζ*
ζ*
ζ
1
1
ζ
ζ*
−ζ*
−ζ
(x , y )
E2u
1
1
−ζ*
−ζ
−ζ
−ζ*
1
1
−ζ*
−ζ
−ζ
−ζ*
−1
−1
ζ*
ζ
ζ
ζ*
−1
−1
ζ*
ζ
ζ
ζ*
ζ = e 2πi/6
13
G13 1 = Z13
---
---
14
G14 1 = Dih7
---
---
14
G14 2 = Z14 = Z7 × Z2
---
---
15
G15 1 = Z15 = Z5 × Z3
---
---
16
G16 5 = Z8 × Z2
---
C 8h
16
G16 7 = Dih8
D 4d
E
2 S 8
2 C 4
2 S 8 3
C 2
4 C 2 '
4 σ d
A1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
1
1
−1
−1
Rz
B1
1
−1
1
−1
1
1
−1
B2
1
−1
1
−1
1
−1
1
z
E1
2
√2
0
−√2
−2
0
0
(x , y )
E2
2
0
−2
0
2
0
0
(x 2 − y 2 , xy )
E3
2
−√2
0
√2
−2
0
0
(Rx , Ry )
(xz , yz )
D 8 ; C 8v
16
G16 11 = Dih4 × Z2
D 4h
E
2 C 4
C 2
2 C 2 '
2 C 2 "
i
2 S 4
σ h
2 σ v
2 σ d
A1g
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
1
−1
−1
1
1
1
−1
−1
Rz
B1g
1
−1
1
1
−1
1
−1
1
1
−1
x 2 − y 2
B2g
1
−1
1
−1
1
1
−1
1
−1
1
xy
Eg
2
0
−2
0
0
2
0
−2
0
0
(Rx , Ry )
(xz , yz )
A1u
1
1
1
1
1
−1
−1
−1
−1
−1
A2u
1
1
1
−1
−1
−1
−1
−1
1
1
z
B1u
1
−1
1
1
−1
−1
1
−1
−1
1
B2u
1
−1
1
−1
1
−1
1
−1
1
−1
Eu
2
0
−2
0
0
−2
0
2
0
0
(x , y )
20
G20 5 = Z10 × Z2 = Z5 × Z2 2 = Z5 × Dih2
---
C 10h
20
G20 4 = Dih10 = Dih5 × Z2
D 5h
E
2 C 5
2 C 5 2
5 C 2
σ h
2 S 5
2 S 5 3
5 σ v
A1 '
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2 '
1
1
1
−1
1
1
1
−1
Rz
E1 '
2
2 cos 2π/5
2 cos 4π/5
0
2
2 cos 2π/5
2 cos 4π/5
0
(x , y )
E2 '
2
2 cos 4π/5
2 cos 2π/5
0
2
2 cos 4π/5
2 cos 2π/5
0
(x 2 − y 2 , xy )
A1 ''
1
1
1
1
−1
−1
−1
−1
A2 ''
1
1
1
−1
−1
−1
−1
1
z
E1 ''
2
2 cos 2π/5
2 cos 4π/5
0
−2
−2 cos 2π/5
−2 cos 4π/5
0
(Rx , Ry )
(xz , yz )
E2 ''
2
2 cos 4π/5
2 cos 2π/5
0
−2
−2 cos 4π/5
−2 cos 2π/5
0
D 5d
E
2 C 5
2 C 5 2
5 C 2
i
2 S 10
2 S 10 3
5 σ d
A1g
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
1
−1
1
1
1
−1
Rz
E1g
2
2 cos 2π/5
2 cos 4π/5
0
2
2 cos 4π/5
2 cos 2π/5
0
(Rx , Ry )
(xz , yz )
E2g
2
2 cos 4π/5
2 cos 2π/5
0
2
2 cos 2π/5
2 cos 4π/5
0
(x 2 − y 2 , xy )
A1u
1
1
1
1
−1
−1
−1
−1
A2u
1
1
1
−1
−1
−1
−1
1
z
E1u
2
2 cos 2π/5
2 cos 4π/5
0
−2
−2 cos 4π/5
−2 cos 2π/5
0
(x , y )
E2u
2
2 cos 4π/5
2 cos 2π/5
0
−2
−2 cos 2π/5
−2 cos 4π/5
0
D 10 ; C 10v
24
G24 12 = Sym4
T d
E
8 C 3
3 C 2
6 S 4
6 σ d
A1
1
1
1
1
1
x 2 + y 2 + z 2
A2
1
1
1
−1
−1
E
2
−1
2
0
0
(2 z 2 − x 2 − y 2 , x 2 − y 2 )
T1
3
0
−1
1
−1
(Rx , Ry , Rz )
T2
3
0
−1
−1
1
(x , y , z )
(xy , xz , yz )
O
E
6 C 4
3 C 2 (=C 4 2 )
8 C 3
6 C 2 '
A1
1
1
1
1
1
x 2 + y 2 + z 2
A2
1
−1
1
1
−1
E
2
0
2
−1
0
(2 z 2 − x 2 − y 2 ,
x 2 − y 2 )
T1
3
1
−1
0
−1
(Rx , Ry , Rz ),
(x , y , z )
T2
3
−1
−1
0
1
(xy , xz , yz )
24
G24 13 = Alt4 × Z2
T h
E
4 C 3
4 C 3 2
3 C 2
i
4 S 6
4 S 6 5
3 σ h
Ag
1
1
1
1
1
1
1
1
x 2 + y 2 + z 2
Au
1
1
1
1
−1
−1
−1
−1
Eg
1
1
ω
ω*
ω*
ω
1
1
1
1
ω
ω*
ω*
ω
1
1
(2 z 2 − x 2 − y 2 ,
x 2 − y 2 )
Eu
1
1
ω
ω*
ω*
ω
1
1
−1
−1
−ω
−ω*
−ω*
−ω
−1
−1
Tg
3
0
0
−1
3
0
0
−1
(Rx , Ry , Rz )
(xy , xz , yz )
Tu
3
0
0
−1
−3
0
0
1
(x , y , z )
ω=e2πi/3
24
G24 14 = Dih6 × Z2 = Dih3 × Z2 2
D 6h
E
2 C 6
2 C 3
C 2
3 C 2 '
3 C 2 "
i
2 S 3
2 S 6
σ h
3 σ d
3 σ v
A1g
1
1
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
1
1
−1
−1
1
1
1
1
−1
−1
Rz
B1g
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
B2g
1
−1
1
−1
−1
1
1
−1
1
−1
−1
1
E1g
2
1
−1
−2
0
0
2
1
−1
−2
0
0
(Rx , Ry )
(xz , yz )
E2g
2
−1
−1
2
0
0
2
−1
−1
2
0
0
(x 2 − y 2 , xy )
A1u
1
1
1
1
1
1
−1
−1
−1
−1
−1
−1
A2u
1
1
1
1
−1
−1
−1
−1
−1
−1
1
1
z
B1u
1
−1
1
−1
1
−1
−1
1
−1
1
−1
1
B2u
1
−1
1
−1
−1
1
−1
1
−1
1
1
−1
E1u
2
1
−1
−2
0
0
−2
−1
1
2
0
0
(x , y )
E2u
2
−1
−1
2
0
0
−2
1
1
−2
0
0
D 6d
E
2 S 12
2 C 6
2 S 4
2 C 3
2 S 12 5
C 2
6 C 2 '
6 σ d
A1
1
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
1
1
1
1
−1
−1
Rz
B1
1
−1
1
−1
1
−1
1
1
−1
B2
1
−1
1
−1
1
−1
1
−1
1
z
E1
2
√3
1
0
−1
−√3
−2
0
0
(x , y )
E2
2
1
−1
−2
−1
1
2
0
0
(x 2 − y 2 , xy )
E3
2
0
−2
0
2
0
−2
0
0
E4
2
−1
−1
2
−1
−1
2
0
0
E5
2
−√3
1
0
−1
√3
−2
0
0
(Rx , Ry )
(xz , yz )
32
Dih8 × Z2
D 8h
E
2 C 8
2 C 8 3
2 C 4
C 2
4 C 2 '
4 C 2 "
i
2 S 8 3
2 S 8
2 S 4
σ h
4 σ d
4 σ v
A1g
1
1
1
1
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
1
1
1
−1
−1
1
1
1
1
1
−1
−1
Rz
B1g
1
−1
−1
1
1
1
−1
1
−1
−1
1
1
1
−1
B2g
1
−1
−1
1
1
−1
1
1
−1
−1
1
1
−1
1
E1g
2
√2
−√2
0
−2
0
0
2
√2
−√2
0
−2
0
0
(Rx , Ry )
(xz , yz )
E2g
2
0
0
−2
2
0
0
2
0
0
−2
2
0
0
(x 2 − y 2 , xy )
E3g
2
−√2
√2
0
−2
0
0
2
−√2
√2
0
−2
0
0
A1u
1
1
1
1
1
1
1
−1
−1
−1
−1
−1
−1
−1
A2u
1
1
1
1
1
−1
−1
−1
−1
−1
−1
−1
1
1
z
B1u
1
−1
−1
1
1
1
−1
−1
1
1
−1
−1
−1
1
B2u
1
−1
−1
1
1
−1
1
−1
1
1
−1
−1
1
−1
E1u
2
√2
−√2
0
−2
0
0
−2
−√2
√2
0
2
0
0
(x , y )
E2u
2
0
0
−2
2
0
0
−2
0
0
2
−2
0
0
E3u
2
−√2
√2
0
−2
0
0
−2
√2
−√2
0
2
0
0
48
Sym4 × Z2
O h
E
8 C 3
6 C 2 '
6 C 4
3 C 2 (=C 4 2 )
i
6 S 4
8 S 6
3 σ h
6 σ d
A1g
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 + z 2
A2g
1
1
−1
−1
1
1
−1
1
1
−1
Eg
2
−1
0
0
2
2
0
−1
2
0
(2 z 2 − x 2 − y 2 ,
x 2 − y 2 )
T1g
3
0
−1
1
−1
3
1
0
−1
−1
(Rx , Ry , Rz )
T2g
3
0
1
−1
−1
3
−1
0
−1
1
(xy , xz , yz )
A1u
1
1
1
1
1
−1
−1
−1
−1
−1
A2u
1
1
−1
−1
1
−1
1
−1
−1
1
Eu
2
−1
0
0
2
−2
0
1
−2
0
T1u
3
0
−1
1
−1
−3
−1
0
1
1
(x , y , z )
T2u
3
0
1
−1
−1
−3
1
0
1
−1
60
Alt5
I
E
12 C 5
12 C 5 2
20 C 3
15 C 2
A
1
1
1
1
1
x 2 + y 2 + z 2
T1
3
2 cos π/5 = (1+√5)/2
2 cos 3π/5 = (1−√5)/2
0
−1
(Rx , Ry , Rz ),
(x , y , z )||
T2
3
2 cos 3π/5 = (1−√5)/2
2 cos π/5 = (1+√5)/2
0
−1
G
4
−1
−1
1
0
H
5
0
0
−1
1
(2 z 2 − x 2 − y 2 ,
x 2 − y 2 , xy , xz , yz )
120
Alt5 × Z2
I h
E
12 C 5
12 C 5 2
20 C 3
15 C 2
i
12 S 10
12 S 10 3
20 S 6
15 σ
Ag
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 + z 2
T1g
3
2 cos π/5 = (1+√5)/2
2 cos 3π/5 = (1−√5)/2
0
−1
3
2 cos 3π/5 = (1−√5)/2
2 cos π/5 = (1+√5)/2
0
−1
(Rx , Ry , Rz )
T2g
3
2 cos 3π/5 = (1−√5)/2
2 cos π/5 = (1+√5)/2
0
−1
3
2 cos π/5 = (1+√5)/2
2 cos 3π/5 = (1−√5)/2
0
−1
Gg
4
−1
−1
1
0
4
−1
−1
1
0
Hg
5
0
0
−1
1
5
0
0
−1
1
(2 z 2 − x 2 − y 2 ,
x 2 − y 2 , xy , xz , yz )
Au
1
1
1
1
1
−1
−1
−1
−1
−1
T1u
3
2 cos π/5 = (1+√5)/2
2 cos 3π/5 = (1−√5)/2
0
−1
−3
−2 cos 3π/5 = −(1−√5)/2
−2 cos π/5 = −(1+√5)/2
0
1
(x , y , z )
T2u
3
2 cos 3π/5 = (1−√5)/2
2 cos π/5 = (1+√5)/2
0
−1
−3
−2 cos π/5 = −(1+√5)/2
−2 cos 3π/5 = −(1−√5)/2
0
1
Gu
4
−1
−1
1
0
−4
1
1
−1
0
Hu
5
0
0
−1
1
−5
0
0
1
−1
120
Sym5
∞
O(2)
C ∞v
E
2 C ∞ Φ
...
∞ σv
A1 =Σ+
1
1
...
1
z
x 2 + y 2 , z 2
A2 =Σ−
1
1
...
−1
Rz
E1 =Π
2
2 cos Φ
...
(x , y ), (Rx , Ry )
(xz , yz )
E2 =Δ
2
2 cos 2Φ
...
0
(x 2 - y 2 , xy )
E3 =Φ
2
2 cos 3Φ
...
0
...
...
...
...
...
∞
Z2 ×O(2)
D ∞h
E
2 C ∞ Φ
...
∞ σv
i
2 S ∞ Φ
...
∞ C 2
Σg +
1
1
...
1
1
1
...
1
x 2 + y 2 , z 2
Σg −
1
1
...
−1
1
1
...
−1
Rz
Πg
2
2 cos Φ
...
0
2
−2 cos Φ
...
0
(Rx , Ry )
(xz , yz )
Δg
2
2 cos 2Φ
...
0
2
2 cos 2Φ
...
0
(x 2 − y 2 , xy )
...
...
...
...
...
...
...
...
...
Σu +
1
1
...
1
−1
−1
...
−1
z
Σu −
1
1
...
−1
−1
−1
...
1
Πu
2
2 cos Φ
...
0
−2
2 cos Φ
...
0
(x , y )
Δu
2
2 cos 2Φ
...
0
−2
−2 cos 2Φ
...
0
...
...
...
...
...
...
...
...
...
∞∞
SO(3)
K
K
E
∞ C ∞ Φ
Σ
1
1
Γl
1
sin
(
2
ℓ
+
1
)
Φ
2
sin
Φ
2
{\displaystyle \sin {\frac {(2\ell +1)\Phi }{2}} \over \sin {\frac {\Phi }{2}}}
∞∞
O(3)
Kh