Teorema fondamentale dell'aritmetica
Il teorema fondamentale dell'aritmetica afferma che:
- Ogni numero naturale maggiore di 1 o è un numero primo o si può esprimere come prodotto di numeri primi. Tale rappresentazione è unica, se si prescinde dall'ordine in cui compaiono i fattori.
L'enunciato è facilmente verificabile per numeri naturali "piccoli": è facile scoprire che 70 è pari a 2×5×7 e 100 equivale a 2×2×5×5 ovvero 22×52, ed è altrettanto facile verificare che per questi numeri non possono esistere altre scomposizioni in fattori primi.
Il teorema fu dimostrato esplicitamente per la prima volta da Gauss nelle Disquisitiones Arithmeticae;[1] Euclide, negli Elementi, insieme all'esistenza della fattorizzazione[2], aveva dimostrato una proposizione, oggi nota come lemma di Euclide[3], dalla quale si ricava la proprietà di fattorizzazione unica.
Nella teoria degli anelli, un analogo della proprietà espressa dal teorema costituisce la definizione stessa di anello a fattorizzazione unica.
Dimostrazione del teoremaModifica
L'enunciato del teorema asserisce l'esistenza di una fattorizzazione in numeri primi per ogni numero naturale, e successivamente la sua unicità. Dimostriamo separatamente le due affermazioni.
Dimostrazione dell'esistenzaModifica
Dalla definizione di numero primo si deduce che ogni numero maggiore o uguale a 2 o è un numero primo oppure si può esprimere come prodotto di numeri primi. Questo fatto si può dimostrare per induzione:
- n=2 è primo, quindi soddisfa quanto enunciato.
- Supponendo vero l'enunciato per tutti i numeri da 2 a n, dimostriamo che vale anche per n+1. Per n+1 ci sono due possibilità: o è primo oppure è divisibile per un numero a compreso tra 2 e n. Nel caso in cui n+1 sia divisibile per a per l'ipotesi induttiva o a è primo oppure a ha un divisore primo p. In quest'ultimo caso (per la proprietà transitiva della divisibilità) p è anche un divisore di n+1. In ogni caso dunque o n+1 è primo o è divisibile per un primo.
La dimostrazione dell'esistenza della fattorizzazione per ogni numero procede ancora per induzione:
- n=2 è primo e dunque è già banalmente fattorizzato.
- Supponiamo vera l'esistenza di una fattorizzazione per tutti i naturali compresi tra 2 e n e dimostriamola vera anche per n+1. Considerando n+1, abbiamo due casi: n+1 è primo (e quindi è già fattorizzato) oppure n+1 è divisibile per un primo p (come dimostrato nella prima parte); in quest'ultimo caso il numero m=(n+1)/p è minore di n+1, e quindi verifica l'ipotesi induttiva, ovvero esiste una fattorizzazione di m. Ma allora n+1=mp cioè n+1 è fattorizzabile (è il prodotto di m e p).
Quindi l'esistenza di una fattorizzazione è dimostrata per ogni numero naturale n.
Dimostrazione dell'unicitàModifica
Dimostriamo che se un numero ammette una fattorizzazione in numeri primi questa è unica.
Per assurdo: Si supponga che esistano dei numeri scomponibili in fattori primi in più di un modo, e si chiami m il più piccolo (che esiste per il principio del buon ordinamento). Innanzitutto si dimostra che, date due fattorizzazioni di m, i numeri primi che si presentano nella prima fattorizzazione sono tutti distinti da quelli della seconda fattorizzazione. Siano infatti [1] e [2] le due diverse fattorizzazioni di m
dove i e i sono primi ma differenti tra loro, ovvero (se ci fosse un fattore identico possiamo ricondurci al caso indicato dividendo per tale fattore e ottenendo un numero che avrebbe anch'esso due fattorizzazioni distinte). All'interno di ogni fattorizzazione ci possono comunque essere fattori ripetuti: ad esempio, 100 = 2×2×5×5.
A questo punto sappiamo che è diverso da ; senza perdita di generalità possiamo supporre che . Poniamo allora
Evidentemente, , dato che la si può scrivere come
- .
Dimostriamo ora che ammette almeno due fattorizzazioni distinte.
Iniziamo considerando il primo fattore di , . Esso può essere primo o meno; nel caso non lo fosse lo fattorizzeremo e la nuova fattorizzazione di così ottenuta non ammetterebbe tra i suoi fattori. Infatti, per la prima parte della dimostrazione sappiamo che è diverso da e non può comparire nella eventuale fattorizzazione di , poiché se ciò accadesse significherebbe che
e quindi sarebbe divisibile per , il che non è possibile in quanto è un numero primo.
Prendendo ora l'ultima uguaglianza della e sostituendo con la otteniamo
In qualunque modo sia fattorizzabile il secondo fattore nella , avremo ottenuto una fattorizzazione di che contiene e che pertanto è diversa da quella nella , contrariamente all'ipotesi che sia il numero più piccolo che ammette più di una fattorizzazione.
L'unicità è pertanto dimostrata.
NoteModifica
- ^ Carl Benjamin Boyer, Storia della matematica, Milano, Mondadori, 1990, p. 582, ISBN 978-88-04-33431-6.
- ^ Euclide, Libro VII, Proposizioni 31 e 32.
- ^ Euclide, Libro VII, proposizione 30.
BibliografiaModifica
- Euclide, Elementi.
- Harold Davenport, Aritmetica superiore – capitolo I, Bologna, Zanichelli, 1994, ISBN 88-08-09154-6.
- (EN) Tom M. Apostol, Introduction to Analytic Number Theory – capitolo 1, New York, Springer-Verlag, 1976, ISBN 0-387-90163-9.
Altri progettiModifica
- Wikimedia Commons contiene immagini o altri file su teorema fondamentale dell'aritmetica
Collegamenti esterniModifica
- (EN) Teorema fondamentale dell'aritmetica, su Enciclopedia Britannica, Encyclopædia Britannica, Inc.