Apri il menu principale

L'equazione di Fisher in matematica finanziaria e economia stima la relazione tra tasso di inflazione atteso, tasso d'interesse nominale e tasso d'interesse reale.
Questa equazione prende il nome da Irving Fisher famoso per i suoi lavori sulla teoria del tasso di interesse e dei Numeri indici. Simili equazioni esistevano ai tempi di Fisher, ma si deve all'economista statunitense la proposta di un migliore grado di approssimazione, qui di seguito illustrata.

Indice

Applicazioni dell'equazioneModifica

L'equazione è principalmente usata per calcolare lo Yield to Maturity ovvero il rendimento alla scadenza di un titolo, in presenza di inflazione positiva.

In campo finanziario questa equazione è usata principalmente per il calcolo dei rendimenti delle obbligazioni o il tasso di rendimento di investimenti. In campo economico questa equazione è usata per predire il comportamenti dei tassi nominali e dei tassi reali.

L'equazione esatta:

 

Assumendo rr come il tasso d'interesse reale, rn come il tasso d'interesse nominale e π come il tasso di inflazione attesa, abbiamo:

 

La equazione è usata sia per analisi ex ante (prima) o ex post (dopo).

DerivazioneModifica

Da

 

ne segue

 

e quindi

 

il fattore   è trascurabile in quanto   è molto più grande che   per cui:

 

EsempioModifica

Considerando il tasso di rendimento del Buono del Tesoro inglese (scadenza 7 marzo 2036 - cedola 4.25%) con Yield to Maturity pari al 3.81% per anno: supponendo di scomporlo in un tasso d'interesse reale del 2% e una inflazione attesa del 1.775% (senza premio per il rischio, essendo i treasury bond considerati privi di rischio), la formula esatta dà:

1.02 x 1.01775 = 1.0381, cioè un tasso nominale del 3.81%

L'equazione di Fisher, invece, porta a calcolare 2% + 1.775% = 3.775% (trascurando l'ulteriore termine aggiuntivo 0.02 * 0.01775 = 0.000355, cioè 0.0355%) e chiamare tasso di interesse nominale tale quantità, asserendo in effetti che 3.775% è quasi uguale a 3.81%.

Al tasso d'interesse nominale del 3.81% per anno, il valore del titolo risulta essere £107.84 per un valore nominale di £100. Nel caso di "tralascio" del fattore   il prezzo risulta differente per 66p. La transazione media nel mercato per simili titoli era £10 milioni, quindi una differenza di 66p risulta pari a £66,000 per transazione.

Stime empiricheModifica

Miskin[1] ha studiato la relazione tra inflazione e tasso d'interesse. Le modifiche del tasso d'interesse a corto termine non riflettono i cambiamenti del tasso d'inflazione atteso, come proposto dalla teoria dell'effetto di Fisher. A lungo termine l'inflazione e il tasso d'interesse seguono il medesimo trend.

Sun e Phillips[2] trovano che anche a lungo termine l'effetto di Fisher non è valevole. La formula di Fisher può essere sempre utilizzata ex post ma si tratta allora di una definizione del tasso d'interesse reale.

Si concorda oggi che l'equazione di Fisher non è un modello adeguato per spiegare il tasso di interesse nominale.[3] In particolare, non tiene conto del rischio di insolvenza come nel caso dei titoli greci o portoghesi.

Comparando il rendimento di un'obbligazione con tasso d'interesse indicizzato sul tasso d'inflazione con quello di un'obbligazione classica si può dedurre il tasso d'inflazione atteso.[4] Questi risultati rivelano l'esistenza di altri fattori nella determinazione del tasso di interesse.

NoteModifica

  1. ^ F. Miskin, "Is the Fisher effect for real?: A reexamination of the relationship between inflation and interest rates", Journal of Monetary Economics, 1992, p. 195-215
  2. ^ Y. Sun and P. Phillips, " Understanding the Fisher Equation ", Journal of Applied Econometrics, 2004, p. 869-886
  3. ^ J. Rust, " Comments on ` Econometric Analysis of Fisher's Equation` ", American Journal of Economics and Sociology, 2005, p. 169-184
  4. ^ "5-Year Treasury Inflation-Indexed Security, Constant Maturity" FRED Economic Data chart from government debt auctions (the x-axis at y=0 represents the inflation rate over the life of the security)

BibliografiaModifica

  • E. Fama, "Short term Interest Rates as Predictors of Inflation", American Economic Review, 1975, p. 269-282
  • I. Fisher, "Appreciation and Interest", Publications of The American Economic Association, 1896, Vol. XI, No. 4, p. 331-442
  • I. Fisher, The Rate of Interest, New York, 1907
  • Fisher, The Theory of Interest, New York, 1930
  • R. Garcia and P. Perron, "An Analysis of the real Rate of Interest Under Regime Shifts", Review of Economics and Statistics, 1996, p. 111-125
  • P.Phillips, "Econometric Analysis of Fisher's Equation", American Journal of Economics and Sociology, 2005, p. 125-168

Voci correlateModifica