Modello autoregressivo

rappresentazione di un tipo di processo stocastico

In statistica e in teoria dei segnali un modello autoregressivo indicato con , o dove è l'ordine del modello, è la rappresentazione di un tipo di processo stocastico; come tale descrive alcuni processi che variano nel tempo come l'economia, ecc. Il modello autoregressivo è un modello lineare che specifica che la variabile in uscita dipende linearmente dai valori delle uscite precedenti. Si tratta di un caso particolare del modello ARMA più generale delle serie storiche.

DescrizioneModifica

Matematicamente si presenta così:

 

dove i parametri  ,  , ..,   costituiscono i coefficienti della regressione lineare della variabile casuale   rispetto ai suoi stessi valori passati,   è il processo di rumore bianco per cui il termine di errore.

In generale, lavorando con processi  , risulta conveniente utilizzare l'operatore backshift  , denominato anche lag operator, che semplifica notevolmente determinate relazioni. Tale operatore si definisce come segue:

 

In generale si ha:

 

Se si considera una costante, ad esempio, la media   si ha:

 

Considerando tale impostazione si ha che il processo autoregressivo di ordine 1, AR(1) diviene:

 

Si ha allora:

 

questa serie, si dimostra facilmente, converge per   che costituisce la condizione di stazionarietà.

Il processo   ha quindi funzione di autocorrelazione   la quale tende a zero in modo monotono per   e varia tra   e   per  .

EsempioModifica

Modello   - Dati relativi alla concentrazione di una soluzione chimica, George Box e Gwilym Jenkins (1976)

17.0 16.6 16.3 16.1 17.1 16.9 16.8 17.4 17.1 17.0 16.7 17.4 17.2 17.4
17.4 17.0 17.3 17.2 17.4 16.8 17.1 17.4 17.4 17.5 17.4 17.6 17.4 17.3
17.0 17.8 17.5 18.1 17.5 17.4 17.4 17.1 17.6 17.7 17.4 17.8 17.6 17.5
16.5 17.8 17.3 17.3 17.1 17.4 16.9 17.3 17.6 16.9 16.7 16.8 16.8 17.2
16.8 17.6 17.2 16.6 17.1 16.9 16.6 18.0 17.2 17.3 17.0 16.9 17.3 16.8
17.3 17.4 17.7 16.8 16.9 17.0 16.9 17.0 16.6 16.7 16.8 16.7 16.4 16.5
16.4 16.6 16.5 16.7 16.4 16.4 16.2 16.4 16.3 16.4 17.0 16.9 17.1 17.1
16.7 16.9 16.5 17.2 16.4 17.0 17.0 16.7 16.2 16.6 16.9 16.5 16.6 16.6
17.0 17.1 17.1 16.7 16.8 16.3 16.6 16.8 16.9 17.1 16.8 17.0 17.2 17.3
17.2 17.3 17.2 17.2 17.5 16.9 16.9 16.9 17.0 16.5 16.7 16.8 16.7 16.7
16.6 16.5 17.0 16.7 16.7 16.9 17.4 17.1 17.0 16.8 17.2 17.2 17.4 17.2
16.9 16.8 17.0 17.4 17.2 17.2 17.1 17.1 17.1 17.4 17.2 16.9 16.9 17.0
16.7 16.9 17.3 17.8 17.8 17.6 17.5 17.0 16.9 17.1 17.2 17.4 17.5 17.9
17.0 17.0 17.0 17.2 17.3 17.4 17.4 17.0 18.0 18.2 17.6 17.8 17.7 17.2
17.4

BibliografiaModifica

  • G.E.P. Box e G.M. Jenkins, Time series analysis: Forecasting and control, San Francisco, Holden-Day, 1970
  • S. Makridakis, S.C. Wheelwright e R.J. Hyndman, Forecasting: methodsand applications, New York, John Wiley & Sons, 1998
  • A. Pankratz, Forecasting with univariate Box–Jenkins models: concepts and cases, New York, John Wiley & Sons, 1983
  • Domenico Piccolo, Introduzione all'analisi delle serie storiche, Carocci, 1990.
  • E Bee Dagum, Analisi delle serie storiche: modellistica, previsione e scomposizione, Springer, 2002.

Voci correlateModifica

Controllo di autoritàThesaurus BNCF 54160
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica