Divisione euclidea

teorema
(Reindirizzamento da Divisione con resto)

La divisione euclidea o divisione con resto è intuitivamente quell'operazione che si fa quando si suddivide un numero a di oggetti in gruppi di b oggetti ciascuno e quindi si conta quanti gruppi sono stati formati e quanti oggetti sono rimasti. Il numero a si chiama dividendo, il numero b è il divisore, il numero di gruppi formati è il quoziente e il numero di oggetti rimanenti il resto.

La possibilità di operare una tale suddivisione per ogni dividendo e ogni divisore diverso dallo zero è stabilita dal seguente

Teorema

Dati due interi a e b con b≠0 esiste un'unica coppia di interi q ed r detti quoziente e resto tali che:

a = b × q + r
0 ≤ r < | b |

dove | b | indica il valore assoluto del divisore.

Questo significa che per ogni dividendo a e divisore b interi esiste solo una coppia di quoziente q e resto r (anch'essi interi) tali che sommando r con il prodotto di b per q si ottenga il dividendo a di partenza. Il resto r può assumere qualsiasi valore positivo (anche zero) strettamente minore di b.

Esempi modifica

  • Se a = 7 e b = 3, si ha q = 2 e r = 1 ovvero 7 = 2 × 3 + 1.
  • Se a = 7 e b = −3, si ha q = −2 e r = 1, ovvero 7 = (−2) × (−3) + 1.
  • Se a = −7 e b = 3, si ha q = −3 e r = 2, ovvero −7 = (−3) × (3) + 2.
  • Se a = −7 e b = −3, si ha q = 3 e r = 2, ovvero −7 = 3 × (−3) + 2.
  • Se a = 3 e b = 7, si ha q = 0 e r = 3, ovvero 3 = 0 × 7 + 3.

Dimostrazione modifica

Dimostrazione dell'esistenza.

Consideriamo l'insieme:

 

Tale insieme è non vuoto infatti

se   si ha

 

se   si ha

 

e poiché b≠0 almeno uno dei due prodotti deve essere non negativo.

Per il principio del buon ordinamento esiste un intero non negativo r che è il minimo di S, dunque per tale r esiste un numero intero q tale che

 

inoltre essendo r il minimo di S si deve avere r < | b |. Infatti se così non fosse avremmo che

 

e che

 

dunque r' sarebbe in S, ma poiché è più piccolo di r, che è il minimo, siamo giunti ad un assurdo.

Dimostrazione dell'unicità

Supponiamo che ci siano due coppie   e   tali che:

 
 

allora si ha

(*)  

inoltre poiché r e r' sono positivi e minori di | b |:

 
 

quindi da (*) si ricava

 

ovvero

 

e poiché si tratta di un numero intero e positivo:

 

e quindi, da (*) si deduce anche

 

cioè le coppie sono uguali.

Generalizzazioni modifica

L'idea della divisione con resto può essere estesa in altre strutture algebriche, come l'anello dei polinomi. Viene chiamato anello euclideo un anello in cui vale una versione generale della divisione euclidea.

Aritmetica modulare modifica

  Lo stesso argomento in dettaglio: Aritmetica modulare.

La divisione euclidea è alla base dell'aritmetica modulare. Fissato un intero n possiamo suddividere l'insieme dei numeri interi in n classi (sottoinsiemi) a seconda del resto che danno una volta divisi per n. In altre parole, si definisce la seguente relazione di equivalenza: si dice che un intero a è equivalente a b modulo n se e solo se la differenza a-b è un multiplo di n. Le classi di equivalenza di  ,

 

rispetto a tale relazione di equivalenza formano un anello.

Divisione intera modifica

A volte con divisione intera viene indicata l'operazione (indicata con il segno  ) definita dalla seguente relazione  . La notazione   indica la funzione parte intera di  .[1]

Questa operazione viene talvolta indicata nei software di calcolo anche come div. Tuttavia come per altre operazioni occorre sempre controllare le specifiche del programma perché con il simbolo div viene indicata anche un altro tipo di divisione intera basata sulla operazione di troncamento e non sull'operazione parte intera.[2]

Note modifica

  1. ^ Weisstein, Eric W., "Integer Division." From MathWorld--A Wolfram Web Resource, su mathworld.wolfram.com. URL consultato il 16 ottobre 2012.
  2. ^ (EN) (EN) Saman Amarasinghe, Walter Lee, Ben Greenwald, Strength Reduction of Integer Division and Modulo Operations, in Languages and compilers for parallel computing : 14th international workshop, LCPC 2001 : Cuumberland Falls, KY, USA, August 2001 : revised papers / Henry G. Dietz (ed.), Berlin, Heidelberg, Springer-Verlag, 2003, pp. 254-273, ISBN 3-540-04029-3.

Voci correlate modifica

Altri progetti modifica

Collegamenti esterni modifica

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica