James Gregory (astronomo)

matematico e astronomo scozzese

James Gregory (Drumoak, 1638Edimburgo, 1675) è stato un matematico e astronomo scozzese.

James Gregory

BiografiaModifica

 
Vera circuli et hyperbolae quadratura, 1667
 
James Gregory (astronomo)

Dopo aver apprese le prime nozioni di geometria dalla madre, a 13 anni legge con facilità gli Elementi di Euclide. Studia all'Università di Aberdeen e si dedica all'ottica scrivendo un libro dal titolo Optica Promota nel quale sviluppa la teoria dell'ottica e il progetto di un nuovo tipo di telescopio, il telescopio a riflessione; questo tipo di telescopio in seguito sarà chiamato telescopio newtoniano, dal nome del suo costruttore. Nel 1663 si trasferisce a Londra dove diventa amico di Collins e fa pubblicare il suo libro. Il primo telescopio a riflessione sarà costruito, come accennato nel 1668 da Isaac Newton.

Dal 1664 al 1668 si reca in Italia e soggiorna gran parte del tempo all'Università di Padova, dove entra in contatto con Stefano degli Angeli dal quale apprende come trattare gli sviluppi in serie delle funzioni. Prima di lasciare Padova pubblica la Geometriae pars universalis. Nell'estate del 1668 risiede a Londra e da qui entra in corrispondenza con Huygens.

Nel 1668 Gregory entra anche nella Royal Society per merito di Robert Moray che ottiene anche che Carlo II d'Inghilterra istituisca una cattedra regia di matematica all'Università di Saint Andrew a lui destinata. Qui trova un ambiente poco ricettivo, ma riesce a lavorare con brillanti risultati. Riceve e legge il libro Lectiones Geometricae di Isaac Barrow. Inoltre da una penna di uccello ricavò il primo reticolo a diffrazione e compì varie osservazioni astronomiche e in particolare effettuò osservazioni su un'eclissi della Luna in collaborazione con astronomi di Parigi.

Tra le scoperte un tempo ignorate di Gregory vanno ricordate: il teorema di Taylor, trovato nel 1671 (Taylor lo pubblicherà nel 1715); la risoluzione del problema di Keplero sulla divisione di un semicerchio con un segmento per un punto dato del diametro, mediante applicazione della serie di Taylor e servendosi del criterio del rapporto per la convergenza delle serie trovato poi da Cauchy; definizione di integrale con la generalità raggiunta successivamente da Riemann;avvio dei tentativi di dimostrare la trascendenza di e e di π; sospetto che le equazioni di grado superiore al quarto non possano essere risolte per radicali.

Fu anche docente di matematica presso l'Università di Edimburgo e fu maestro del giovane Robert Wallace, che ricopriva il ruolo di assistente personale.

OpereModifica

Voci correlateModifica

Altri progettiModifica

Collegamenti esterniModifica

Controllo di autoritàVIAF (EN39475242 · ISNI (EN0000 0001 1948 8040 · SBN UFIV122807 · BAV 495/131582 · CERL cnp01344826 · LCCN (ENn84177193 · GND (DE118718754 · BNF (FRcb12459917j (data) · J9U (ENHE987007933264205171 · WorldCat Identities (ENlccn-n84177193