Test F

(Reindirizzamento da Test F di Fisher-Snédecor)

In statistica il test F per il confronto di due varianze è un test di ipotesi basato sulla distribuzione F di Fisher-Snedecor e volto a verificare l'ipotesi che due popolazioni che seguono entrambe distribuzioni normali abbiano la stessa varianza.

ProcedimentoModifica

Se le popolazioni X e Y seguono rispettivamente le distribuzioni normali   e  , allora

  • i campioni   e   si suppongono indipendenti, i primi isonomi a X e i secondi isonomi a Y;
  • gli stimatori delle varianze osservate   e   sono variabili aleatorie indipendenti;
  • le variabili aleatorie   e   seguono rispettivamente le distribuzioni chi quadro   e  ;
  • il rapporto   segue la distribuzione di Fisher-Snedecor  .

Variabile di decisioneModifica

Sotto l'ipotesi  , ovvero se le due popolazioni hanno la stessa varianza, allora la variabile aleatoria

 

segue la distribuzione di Fisher-Snedecor

 

di parametri n-1 e m-1, dove n e m sono le numerosità dei due campioni.

La scelta del numeratore non influenza il test: sotto l'ipotesi nulla la variabile aleatoria   segue la distribuzione  .

Il testModifica

Come regione di accettazione, al livello di significatività α, viene preso l'intervallo compreso tra i quantili di ordine   e  , mentre la regione di rifiuto è quella esclusa:

 

Un valore appartenente all'intervallo   suggerisce che la varianza di X sia minore della varianza di Y, mentre un valore appartenente all'intervallo   suggerisce l'inverso.

EconometriaModifica

In molti casi la statistica F può essere calcolata con un processo più diretto:

 [1]

dove SSRi è la somma dei quadrati residui (dall'inglese Sum of Square Residuals) del modello i.

In econometria vale anche la seguente formula di moltiplicazioni tra matrici:

 

dove:

  •   è la matrice dei vincoli;
  •   è il parametro d'eguagliaza;
  •   è l'inversa della matrice con le covarianze;
  •   è il numero dei vincoli di  .

Solitamente gli strumenti sono rilevanti se F ≥ 10

Una tavola dei valori critici del test F può essere trovata qui.

Applicazione alla comparazione di diverse statistiche Modifica

In analisi dei dati il test F viene comunemente usato per confrontare i risultati ottenuti con due diversi metodi e valutati con l'estimatore  .[2] Se si hanno due variabili   e   che seguono la distribuzione di   a   e   gradi di libertà rispettivamente, si può costruire la variabile  :

 

che sarà distribuita secondo la Distribuzione F:

 .

Per capire se   e   siano consistenti si usa, quindi, l'integrale della distribuzione di probabilità per  :

 

dove   è il particolare valore di   ottenuto.

Il valore di   fornisce la probabilità di trovare un valore di   pari a   o più alto da dati casuali se   e   sono in accordo.

Tipicamente il test F usato per i   confronta due fit applicati agli stessi dati per capire se uno è migliore dell'altro. Se il valore di   è minore del livello di confidenza scelto (ad es. 5%), si ha una significativa differenza nella bontà dei due fit.

NoteModifica

  1. ^ GraphPad Software Inc, How the F test works to compare models, GraphPad Software Inc, 2007/10/11.
  2. ^ Bevington, P.R. Robinson, D. K. - Data reduction and error analysis for physical sciences , Mc Graw Hill

Collegamenti esterniModifica