Famiglia delle endoteline
Identificatori
SimboloEndoteline
PfamPF00322
InterProIPR001928
PROSITEPDOC00243
SCOP1edp
OPM family156
OPM protein3cmh
Endotelina 1
Gene
HUGOEDN1
Entrez1906
LocusChr. 6 p23-p24
Proteina
OMIM131240
UniProtP05305
Endotelina 2
Gene
HUGOEDN2
Entrez1907
LocusChr. 1 p34
Proteina
OMIM131241
UniProtP20800
Endotelina 3
Gene
HUGOEDN3
LocusChr. 20 q13.2-q13.3
Proteina
OMIM131242
UniProtP14138

Le endoteline sono una classe di proteine che costringono i vasi sanguigni provocando un aumento della pressione arteriosa. Il loro effetto è normalmente mantenuto bilanciato da altri meccanismi, ma quando sono sovraespresse, possono contribuire all'ipertensione e aumentare il rischio di eventi cardiovascolari.

Le endoteline sono peptidi di 21-residui amminoacidici vasocostrittivi prodotti principalmente nell'endotelio e hanno un ruolo chiave nell'omeostasi vascolare. Tra i più forti agenti vasocostrittivi noti, le endoteline sono implicate nelle malattie vascolari di diversi organi, incluso il cuore, la circolazione generale ed il cervello.[1][2]

Isoforme e distribuzione tissutale

modifica

Ci sono tre isoforme (identificate come ET-1, -2, -3) con diverse regioni di espressione, e due tipi di recettori, ETA ed ETB.

  • I recettori ETA si trovano sul tessuto muscolare liscio del vasi sanguigni ed il legame delle endoteline ai recettori ETA aumenta la vasocostrizione (contrazione delle pareti dei vasi sanguigni) e ritenzione di sodio, portando ad un'aumentata pressione sanguigna.[3].
  • I recettori ETB sono localizzati principalmente nelle cellule endoteliali che rivestono l'interno dei vasi sanguigni. Quando l'endotelina si lega ai recettore ETB si ha il rilascio di ossido nitrico (precedentemente noto come fattore di rilascio endotelio-derivato), natriuresi, diuresi e meccanismi che abbassano la pressione.
  • Entrambi i tipi di recettori ET si trovano anche nel sistema nervoso dove mediano la trasmissione nervosa e funzioni vascolari.[4]

Cervello e nervi

modifica

I recettori per le endoteline, vastamente distribuiti nel corpo, sono presenti nei vasi sanguigni e nelle cellule cerebrali, nel plesso corioideo e nei nervi periferici. L'endotelina 1, quando applicata direttamente al cervello di topi in quantità picomolari, in un modello sperimentale di ictus, causa una grave stimolazione metabolica e convulsioni con la diminuzione sostanziale del flusso sanguigno in alcune aree cerebrali; entrambi gli effetti sono mediati da canali del calcio.[5]

Una forte azione vasocostrittiva simile a quella dell'endotelina 1 è stata dimostrata in un modello di neuropatia periferica nei topi.[6]

Esempi di interazioni fisiologiche

modifica

Negli individui sani viene mantenuto un delicato bilanciamento tra vasocostrizione e vasodilatazione grazie all'azione di endoteline e altri vasocostrittori da una parte e ossido nitrico, prostacicline e altri vasodilatatori dall'altra.

La sovrapproduzione di endoteline nel polmone può causare ipertensione polmonare, che può talvolta essere trattata con un antagonista del recettore delle endoteline, come il bosentan, il sitaxentan o l'ambrisentan. L'untimo di questi farmaci blocca selettivamente i recettori A delle endoteline, diminuendo l'azione vasocostrittiva e permettendo un aumentato effetto benefico legato alla stimolazione del recettore B, con produzione di monossido di azoto. L'effetto preciso di attivazione del recettore delle endoteline B dipende dal tipo di cellula coinvolta.

Ruolo patologico

modifica

La distribuzione ubiquitaria delle endoteline e dei loro recettori implica il loro coinvolgimento in una vasta varietà di processi fisiologici e patologici. Tra le numerose patologie in cui potrebbe essere presente una disregolazione delle endotoline ci sono:

Regeolazione genica

modifica

L'endotelio regola il tono vascolare locale attraverso il rilascio coordinato di molecole vasoattive. La secrezione di endotelina-a (ET-1) da parte dell'endotelio provoca vasocostrizione e influenza la sopravvivenza e la crescita cellulare locale. L'ET-1 è stata ritenuta responsabile dello sviluppo e della progressione di disordini vascolari come l'aterosclerosi e l'ipertensione. Le cellule endoteliali sovraesprimono ET-1 in risposta ad ipossia, LDL ossidate, citochine proinfiammatorie e tossine batteriche. Gli studi iniziali sul promotore genico di ET-1 hanno fornito alcune delle prime interpretazione meccanicistiche della regolazione genica endotelio-specifica. numerosi studi sono stati svolti da allora fornendo utili interpretazione della regolazione del promotore di ET-1 sia in condizioni basali sia in stati cellulari attivati.

L'mRNA di ET-1 è labile con un emivita di meno di un'ora. L'azione della trascrizione di ET-1 assieme con il rapido turnover cellulare dell'mRNA permettono un controllo stringente sulla sua espressione. È stato dimostrato che l'mRNA di ET-1 è selettivamente stabilizzato in risposta all'attivazione cellulare da parte delle tossine Shiga-like derivate da Escherichia coli O157:H7; ciò suggerisci che ET-1 sia regolato da un meccanismo post-trascrizionale. Elementi regolatori che modulano l'emivita dell'mRNA sono frequentemente ritrovati nelle regioni 3'-UTR (regioni non tradotte 3'). La regione 3'-UTR da 1 100 paia di basi dell'ET-1 umana costituisce oltre il 50% della lunghezza del trascritto primario e presenta lunghi tratti di sequenze altamente conservate inclusa una regione ricca in AU. Alcuni elementi 3'-UTR ricchi in AU (dall'inglese abbreviati AREs) rivestono un ruolo regolatorio importante nelle citochine e nell'espressione di proto-oncogeni mediante l'influenzamento dell'emivita in condizioni basali e in risposta all'attivazione cellulare. Sono state caratterizzate diverse proteine leganti l'RNA con affinità per gli AREs, inclusa AUF1 (hnRNPD), la famiglia ELAV (HuR, HuB, HuC, HuD), tristetraprolina, TIA/TIAR, HSP70, e altre. Sebbene non siano ancora stati completamente chiariti i meccanismi diretti dell'attività degli ARE, i modelli attuali suggeriscono che le proteine leganti gli ARE indirizzino specifici mRNA verso vie cellulari che influenzano il metabolismo della coda 3'-poliadenilato e del Rivestimento in 5'.[10]

  1. ^ AV. Agapitov, WG. Haynes, Role of endothelin in cardiovascular disease., in J Renin Angiotensin Aldosterone Syst, vol. 3, n. 1, Mar 2002, pp. 1-15, DOI:10.3317/jraas.2002.001, PMID 11984741.
  2. ^ S. Schinelli, Pharmacology and physiopathology of the brain endothelin system: an overview., in Curr Med Chem, vol. 13, n. 6, 2006, pp. 627-38, PMID 16529555.
  3. ^ MM. Hynynen, RA. Khalil, The vascular endothelin system in hypertension--recent patents and discoveries., in Recent Pat Cardiovasc Drug Discov, vol. 1, n. 1, Jan 2006, pp. 95-108, PMID 17200683.
  4. ^ K. Barnes, AJ. Turner, The endothelin system and endothelin-converting enzyme in the brain: molecular and cellular studies., in Neurochem Res, vol. 22, n. 8, Aug 1997, pp. 1033-40, PMID 9239759.
  5. ^ PM. Gross, DW. Zochodne; DS. Wainman; LT. Ho; FJ. Espinosa; DF. Weaver, Intraventricular endothelin-1 uncouples the blood flow: metabolism relationship in periventricular structures of the rat brain: involvement of L-type calcium channels., in Neuropeptides, vol. 22, n. 3, Jul 1992, pp. 155-65, PMID 1331845.
  6. ^ DW. Zochodne, LT. Ho; PM. Gross, Acute endoneurial ischemia induced by epineurial endothelin in the rat sciatic nerve., in Am J Physiol, vol. 263, 6 Pt 2, dicembre 1992, pp. H1806-10, PMID 1481904.
  7. ^ A. Bagnato, L. Rosanò, The endothelin axis in cancer., in Int J Biochem Cell Biol, vol. 40, n. 8, 2008, pp. 1443-51, DOI:10.1016/j.biocel.2008.01.022, PMID 18325824.
  8. ^ RL. Macdonald, Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution., in Nat Clin Pract Neurol, vol. 3, n. 5, May 2007, pp. 256-63, DOI:10.1038/ncpneuro0490, PMID 17479073.
  9. ^ F. Hasue, T. Kuwaki; YY. Kisanuki; M. Yanagisawa; H. Moriya; Y. Fukuda; M. Shimoyama, Increased sensitivity to acute and persistent pain in neuron-specific endothelin-1 knockout mice., in Neuroscience, vol. 130, n. 2, 2005, pp. 349-58, DOI:10.1016/j.neuroscience.2004.09.036, PMID 15664691.
  10. ^ IA. Mawji, Role of the 3'-untranslated region of human endothelin-1 in vascular endothelial cells. Contribution to transcript lability and the cellular heat shock response., in J Biol Chem, vol. 279, n. 10, Mar 2004, pp. 8655-67, DOI:10.1074/jbc.M312190200, PMID 14660616.

Letture ulteriori

modifica


Collegamenti Esterni

modifica
[[Categoria:Ormoni peptidici]]