Apri il menu principale

Grafene

allotropo del carbonio
Modello molecolare del grafene, con struttura a celle esagonali.
Un blocco di grafite, un transistor al grafene e un dispenser di nastro adesivo, donati al Nobel Museum di Stoccolma da Andre Geim e Konstantin Novosëlov nel 2010.

Il grafene è un materiale costituito da uno strato monoatomico di atomi di carbonio (avente cioè uno spessore equivalente alle dimensioni di un solo atomo). Ha la resistenza teorica del diamante e la flessibilità della plastica[1].

Come suggerisce la desinenza -ene del nome, gli atomi sono ibridati nella forma sp², e si dispongono quindi a formare esagoni con angoli di 120°. In presenza di imperfezioni (pentagoni o ettagoni invece degli esagoni), la struttura si deforma: con 12 pentagoni si ha un fullerene. La presenza di singoli pentagoni o ettagoni provoca invece increspature della superficie.

Le scoperte sul grafene e le sue applicazioni (realizzazione di un transistor) conseguite nel 2004[2] hanno valso il premio Nobel per la fisica 2010 ai due fisici Andrej Gejm e Konstantin Novosëlov dell'Università di Manchester. Nonostante i problemi iniziali nell'applicabilità del grafene a singolo strato, i due fisici hanno evoluto il materiale fino alla costruzione del cosiddetto grafene a doppio strato, che garantisce più resistenza e flessibilità di utilizzo.[3]

DescrizioneModifica

Uno strato ideale di grafene consiste esclusivamente di celle esagonali; strutture pentagonali o ettagonali sono difetti. In particolare, in presenza di una cella pentagonale isolata, lo strato planare di grafene si deforma fino ad assumere una forma conica; se invece le strutture pentagonali sono 12 si ha un fullerene. Allo stesso modo la presenza di una cella isolata ettagonale causa una deformazione che trasforma la struttura planare in una sella, e l'inserimento controllato di celle pentagonali o ettagonali permette la realizzazione di strutture molto complesse. Nanotubi di carbonio a singola parete possono essere considerati cilindri di grafene; talvolta alle estremità di questi nanotubi si trovano strutture emisferiche costituite da fogli di grafene contenenti 6 strutture pentagonali, che fungono da "tappo".

La definizione ufficiale del grafene data dalla IUPAC è:

«Uno strato singolo di atomi di carbonio ordinati secondo la struttura della grafite può essere considerato come l'elemento finale della serie naftalene, antracene, coronene, ecc. e la parola grafene va quindi utilizzata per indicare gli strati singoli di carbonio all'interno dei composti della grafite. Il termine "strato di grafene" è comunemente utilizzato all'interno della terminologia del carbonio.»

(Bohem, Setton e Stummp, Nomenclature and terminology of graphite intercalation compounds[4])

ProduzioneModifica

Esfoliazione meccanicaModifica

L'esfoliazione meccanica della grafite consiste nell'applicazione di una forza alla superficie di cristalli di grafite altamente orientata per staccare e dispiegarne gli strati cristallini fino ad ottenere il singolo strato. I primi tentativi si effettuarono già nel 1998, quando l'interazione di punte per analisi AFM (microscopio a forza atomica) e STM (microscopio a effetto tunnel) con la superficie della grafite fu sfruttata per fornire un'energia sufficiente a superare le forze di attrazione inter-piano e portare alla rimozione e isolamento dello strato monoatomico cristallino. In seguito il gruppo di André Geim ha sviluppato un metodo molto semplice, universalmente noto come metodo scotch-tape, che usa semplice nastro adesivo per esfoliare la grafite. La tecnica consiste nel porre la superficie di un cristallo di grafite sul nastro adesivo, staccare il nastro e pelare così alcuni strati di materiale. Il nastro con l'impronta della grafite è quindi ripiegato su se stesso e svolto diverse volte. Ogni volta, i fiocchi deposti si dividono in strati sempre più sottili. Alla fine del processo, i sottili fiocchi adesi possono essere trasferiti in maniera semplice ad un substrato isolante. L'esfoliazione meccanica è il metodo più semplice ed accessibile per isolare fiocchi di grafene della dimensione di alcuni micron quadri, utili per la ricerca di base sulle sue proprietà. Purtroppo questo metodo non è adatto per una produzione industriale.

Esfoliazione in fase liquidaModifica

Il metodo si basa sull'utilizzo delle forze di pressione che si generano all'interno di un liquido. Grafite in polvere è mescolata ad un solvente dotato delle opportune qualità fisiche come viscosità, tensione superficiale, etc... (tipicamente 1-metil-2-pirrolidone) o in una miscela di acqua e surfattante. La sospensione è quindi sottoposta a miscelazione attraverso onde ultrasoniche, o mixer ad alta forza di taglio, o mulino a biglie ecc. Tali processi creano all'interno del liquido sia forze di taglio che di cavitazione che causano la rottura dei cristalli di grafite secondo il piano basale, riducendoli a fogli sempre più sottili e, idealmente, singoli fogli di grafene. La sospensione risultante dal processo è poi purificata con ultracentrifugazione. Tale metodo risulta uno dei più promettenti dal punto di vista della scalabilità, e permette di ottenere grandi quantità di ottimo grafene. Per contro, i fiocchi risultano piuttosto piccoli come dimensioni laterali.

Riduzione dell'ossido di grafiteModifica

Finora gli sforzi sono stati diretti soprattutto verso l'esfoliazione dell'ossido di grafite (GO), un materiale avente la stessa struttura lamellare della grafite nel quale però alcuni atomi di carbonio presentano legami con ossigeno sotto forma di ossidrili (-OH) o di carbonili (C=O) o più raramente di carbossili, ed in cui la distanza tra gli strati di grafene aumenta a causa dell'ingombro dell'ossigeno. La sua natura fortemente idrofilica consente di ottenere, con l'utilizzo di onde acustiche ultrasoniche, l'intercalazione (ovvero l'inclusione reversibile di molecole all'interno di altre molecole o gruppi) di molecole d'acqua e, conseguentemente, una pressoché completa esfoliazione (~90%) del materiale in strati monoatomici di GO. Il grafene ossido è però un materiale isolante in cui i legami con l'ossigeno devono essere scissi ed il carbonio ridotto per poter avere le stesse proprietà del grafene. Sono stati sperimentati con successo sia metodi di riduzione di tipo chimico (mediante idrazina N2H4, idrochinone, sodio boro idruro o anche vitamina C) che metodi termici o UV che hanno prodotto materiali con conducibilità nell'ordine dei 102 S cm-1.

Metodo chimicoModifica

Il grafene si ricava in laboratorio dalla grafite. I cristalli di grafite sono trattati con una soluzione fortemente acida a base di acido solforico e nitrico e poi ossidati ed esfoliati fino ad ottenere cerchi di grafene con gruppi carbossilici ai bordi. Mediante trattamento con cloruro di tionile (SOCl2), queste molecole periferiche sono trasformate in cloruri acilici (alogenuri acilici composti da un acile e un atomo di cloro) e poi in ammidi). Il risultato è un cerchio di grafene solubile in tetraidrofurano, tetraclorometano e dicloroetano.

Altri metodiModifica

  • Crescita epitassiale su carburo di silicio
  • Crescita epitassiale su substrati metallici
  • Crescita per segregazione del carbonio da leghe carbonio-metallo

Struttura atomicaModifica

Il grafene ha una struttura composta da un reticolo esagonale a nido d'ape dove i singoli atomi di carbonio sono legati tramite legami covalenti.

ProprietàModifica

Proprietà elettronicheModifica

Il grafene si comporta come un semiconduttore a Gap nullo. La sua particolare struttura elettronica fa sì che possa comportarsi sia come semiconduttore P che come semiconduttore N in assenza di drogaggio, per mero controllo elettronico (gating). Altri impieghi sono nelle celle solari, nelle batterie a flusso e nelle batterie agli ioni di litio. Recentemente sono state immesse sul mercato batterie a ioni di litio cosiddette "al grafene" che utilizzerebbero grafene come materiale anodico. Bisogna tuttavia rilevare come l'assenza di norme internazionali che definiscano cosa può o non può essere chiamato grafene fa sì che molti prodotti "al grafene" utilizzino semplicemente grafiti micronizzate.

Proprietà otticheModifica

Un singolo strato di grafene, pur essendo spesso un solo atomo, è in grado di assorbire il 2.3% della radiazione uniformemente su pressoché tutto lo spettro ottico. Per confronto, un film di silicio con lo stesso spessore assorbirebbe solo lo 0.03% della luce.[5]

Proprietà termicheModifica

Il grafene è il miglior conduttore termico noto, superiore anche al diamante, e molte applicazioni commerciali sfruttano questa caratteristica.

Proprietà meccanicheModifica

Il grafene è il materiale più sottile al mondo ed è praticamente trasparente (97.7% della luce). Ha un carico di rottura teorico di 130 GPa e un modulo di elasticità di circa 1 TPa e può essere stirato fino al 20% della sua lunghezza. Secondo i suoi scopritori vincitori del premio Nobel nel 2010, un singolo foglio di grafene (quindi un foglio alto 1 atomo) largo 1 metro quadro sarebbe capace di sostenere il peso di un gatto di 4 kg, pesare 0,7 mg ed essere virtualmente invisibile. Il grafene, che teoricamente dovrebbe avere una notevole resistenza meccanica, è un materiale fragile [1] e questa fragilità, combinata con l'inevitabile presenza di difetti all'interno dei componenti quando se ne aumentano le dimensioni[6], non consente di produrre fogli molto grandi di grafene né di produrre oggetti di grafene con valori di resistenza meccanica a trazione interessanti per applicazioni strutturali.

Utilizzi e potenziali applicazioniModifica

Il grafene, come conduttore, è oggetto di intensi programmi di studio per utilizzarlo nei sistemi a semiconduttori. Nel 2010 un gruppo della IBM ha realizzato un transistor al grafene con una frequenza di funzionamento massima di 100 GHz e lunghezza del gate di 240 nm; Nel 2011, l'IBM ha realizzato un transistor dello stesso materiale con una frequenza di 155 GHz[7] e lunghezza del gate di 40 nm. Nel 2010, all'UCLA, un altro test con il grafene ha toccato il record di velocità di un transistor raggiungendo i 300 GHz. Analoghi transistor all'arseniuro di gallio hanno una frequenza massima di 40 GHz.[8] Una delle principali applicazioni dei materiali in grafene già disponibili riguarda i nanocompositi polimerici, ottenuti incorporando grafene (come nano-carica) nella matrice polimerica di base.[9]

Rilevazione di molecole di gasModifica

Il grafene è capace di immagazzinare idrogeno: se deformato, forma delle "creste", e l'idrogeno tende ad accumularsi sulle punte di tali creste. Per rilasciare il gas è necessario eliminare la deformazione del grafene, in modo che l'idrogeno sia espulso dalle creste. Tali risultati sono frutto del lungo lavoro messo in atto dall'Adanascelo team nell'isola di Hokkaido, in Giappone.

IlluminazioneModifica

Alcuni ricercatori della Columbia Engineering hanno realizzato una lampadina miniaturizzata, capace di emettere luce grazie a un filamento incandescente di grafene, analogamente a quanto avviene nelle comuni lampadine con filamento di tungsteno. Per ottenere questo risultato gli scienziati hanno applicato dei piccoli elettrodi metallici su strisce di grafene invisibili ad occhio nudo. Quando nel circuito passa corrente elettrica, il grafene si riscalda fino a 2500 °C emettendo luce visibile. La scoperta è stata pubblicata sulla rivista Nature Nanotechnology nel 2015.

DesalinizzazioneModifica

Un esperimento di osmosi inversa è stato condotto negli Stati Uniti dai ricercatori del Massachusetts Institute of Technology. "La struttura molecolare peculiare del grafene consente di creare fori di qualsiasi dimensione sulla sua superficie. Questo ha permesso di far passare l'acqua da una parte e i sali dall'altra dello strato", esattamente come accade in una comune osmosi inversa a membrane.

TennisModifica

Il grafene è stato applicato per la prima volta nel tennis nel 2012 con la creazione di una racchetta nella quale fu aggiunto un innesto in grafene al cuore della racchetta, per rendere tale zona più leggera e dinamica e potendo così aggiungere peso al manico e in testa alla racchetta.

CiclismoModifica

L'azienda italiana Vittoria utilizza questo materiale nella mescola delle gomme per assicurare maggiore aderenza, maggiore velocità, maggiore resistenza alle forature e più resistenza in generale. Dopo svariate ricerche e test, si è notato che le molecole di grafene, essendo estremamente sottili, riescono a riempire lo spazio vuoto che separa le molecole di gomma. Di conseguenza, il grafene agisce come un magnete: infilandosi tra le molecole di gomma, crea di fatto un legame con le stesse e le tiene più unite. Vittoria ha ottenuto risultati straordinari anche con l’applicazione del grafene alle ruote. Proprio come negli pneumatici, anche nelle ruote il grafene agisce come magnete integrandosi con il carbonio di cui sono fatte. Essendo estremamente sottile, il grafene si stratifica negli spazi che dividono le molecole di carbonio e crea un legame con esse. Ne consegue che le caratteristiche del carbonio in termini di rigidità laterale della ruota, resistenza agli urti, riduzione del peso e dissipazione del calore migliorano esponenzialmente. Inoltre, il carbonio impreziosito dal grafene, consente alle ruote di resistere a pressioni di gonfiaggio di copertoni tubeless molto più elevate di prima e di resistere ancor meglio alle frenate più brusche, in qualsiasi condizione.[10]

Progetti di sviluppoModifica

Nel gennaio 2013 il progetto Graphene[11] (insieme al progetto Human Brain Project) è stato selezionato dalla Commissione europea tra i FET Flagships, i progetti faro di ricerca e sviluppo promossi dall'Unione europea[12]: scelti da una rosa di sei candidati[13], i due progetti beneficeranno di un sostegno finanziario di 1 miliardo di euro per la durata di dieci anni.

TossicitàModifica

La tossicità del grafene è stata discussa ampiamente nella letteratura scientifica. La raccolta più ampia riguardo alla tossicità del grafene riepiloga gli effetti in vitro, in vivo, antimicrobici e ambientali di questa sostanza ed evidenzia i vari meccanismi della tossicità del grafene stesso, che dipende da fattori come forma, dimensione, purezza della sostanza, fasi lavorative della post-produzione, stato ossidativo, gruppi funzionali, stato di dispersione, metodi di sintesi, dose di somministrazione e tempi di esposizione.[14]

I nanonastri, le nanopiastrine e le nano-cipolle di grafene non sono tossiche fino alla concentrazione di 50 µg/ml. Queste nanoparticelle non alterano la differenziazione delle cellule staminali del midollo osseo in osteoblasti o adipociti, suggerendo che a basse dosi le nanoparticelle di grafene sono sicure per eventuali applicazioni biomediche. Dei cristalli di grafene multistrato dello spessore di 10 µm sono stati capaci di perforare le membrane cellulari in soluzione; una ricerca della Brown University descrive la potenziale tossicità del grafene: intaccherebbe e danneggerebbe le cellule umane per via della sua natura bidimensionale, soprattutto quando finemente frammentato, come è anche stato segnalato per i fullereni.[15]. Gli effetti fisiologici del grafene rimangono incerti, e questo rimane un campo inesplorato.

NoteModifica

  1. ^ Grafene su panorama.it, su scienza.panorama.it (archiviato dall'url originale il 14 settembre 2014).
  2. ^ UK, realizzato un transistor di grafite
  3. ^ Il grafene a doppio strato, la prossima rivoluzione scientifica?
  4. ^ H.P. Boehm, R. Setton e Stumpp, E., Nomenclature and terminology of graphite intercalation compounds, in Pure and Applied Chemistry, vol. 66, 1994, p. 1893-1901, DOI:10.1351/pac199466091893.
  5. ^ (EN) R. R. Nair, P. Blake e A. N. Grigorenko, Fine Structure Constant Defines Visual Transparency of Graphene, in Science, vol. 320, nº 5881, 6 giugno 2008, pp. 1308–1308, DOI:10.1126/science.1156965. URL consultato il 5 novembre 2016.
  6. ^ Dimitrios G. Papageorgiou, Ian A. Kinloch e Robert J. Young, Mechanical properties of graphene and graphene-based nanocomposites, in Progress in Materials Science, vol. 90, 1º ottobre 2017, pp. 75–127, DOI:10.1016/j.pmatsci.2017.07.004. URL consultato il 3 luglio 2019.
  7. ^ IBM sperimenta un transistor in grafene da 155GHz, Business Magazine, 11 aprile 2011.
  8. ^ IBM: dimostrazione di un transistor in grafene da 100GHz, Hardware Upgrade, 8 febbraio 2010. URL consultato il 9 febbraio 2010.
  9. ^ T. Gatti, N. Vicentini, E. Menna, Le potenzialità di impiego del grafene in ambito industriale (PDF), Innova FVG - Progetto NANOCOAT. URL consultato il 6 febbraio 2017 (archiviato dall'url originale il 7 febbraio 2017).
  10. ^ (EN) Vittoria Graphene technology, in Vittoria. URL consultato il 26 agosto 2018.
  11. ^ Il sito del progetto Graphene
  12. ^ Nicola Nosengo, Ecco le tecnologie (europee) del futuro, 25 gennaio 2013, dal sito dell'Istituto dell'Enciclopedia italiana Treccani
  13. ^ Henry Markram, Il Progetto cervello umano, Le Scienze, agosto 2012, p. 46
  14. ^ (EN) Lalwani, Gaurav; D'Agati, Michael; Mahmud Khan, Amit; Sitharaman, Balaji et al., "Toxicology of graphene-based nanomaterials"., in Advanced Drug Delivery Reviews, vol. 105, 109-144, ottobre 2016, DOI:10.1016/j.addr.2016.04.028. URL consultato il 30 agosto 2015.
  15. ^ Valerio Porcu, Il grafene è tossico, attacca le cellule e le danneggia, in Tom's Hardware, 16 luglio 2013. URL consultato il 4 aprile 2017 (archiviato dall'url originale il 14 settembre 2015).

Voci correlateModifica

Altri progettiModifica

Collegamenti esterniModifica

Controllo di autoritàGND (DE7591667-8 · NDL (ENJA001130423
  Portale Chimica: il portale della scienza della composizione, delle proprietà e delle trasformazioni della materia