Punto di sella
Questa voce o sezione sull'argomento matematica non cita le fonti necessarie o quelle presenti sono insufficienti.
|
In analisi matematica, un punto di sella di una funzione reale di più variabili reali è un punto critico del dominio della in cui la matrice hessiana risulti indefinita: vale a dire non sia né una matrice semidefinita positiva, né una matrice semidefinita negativa. Ciò è equivalente a dire che la matrice hessiana ha un autovalore strettamente positivo ed uno strettamente negativo.

Nel caso , il grafico della funzione ha una forma intorno a che ricorda la sella di un cavallo. In particolare, esistono due curve passanti per tali che, per la restrizione di su queste curve, è rispettivamente punto di minimo e punto di massimo relativo.
EsempioModifica
Sia
Nel punto abbiamo un punto stazionario dato che il gradiente è nullo: infatti
La forma quadratica della funzione, nel punto , è data dall'espressione sottostante:
Ma:
pertanto, nel punto , si ha:
Si può ora verificare semplicemente (ad esempio tramite la matrice hessiana corrispondente) che la forma quadratica non è né semidefinita positiva né semidefinita negativa, per cui risulta essere indefinita, e quindi il punto è un punto di sella. La matrice hessiana è:
Visto che la matrice hessiana è già in forma diagonale, si vede anche immediatamente che gli autovalori sono e : avendo sia un autovalore positivo che uno negativo, la matrice hessiana è, per l'appunto, indefinita.
Si può anche osservare che in questo esempio la forma hessiana è in ogni punto, non solo in . Questo non è casuale: dipende dal fatto che la funzione data era un polinomio di secondo grado e pertanto le sue derivate parziali seconde sono costanti.
Altri progettiModifica
- Wikimedia Commons contiene immagini o altri file sul punto di sella