Topologia quoziente

In topologia, la topologia quoziente è intuitivamente quella ottenuta da uno spazio topologico "attaccando" alcuni punti fra loro. Lo spazio topologico che si ottiene viene anche chiamato spazio quoziente.

Definizione modifica

Sia   uno spazio topologico e   una relazione di equivalenza su  . Definiamo una topologia sull'insieme quoziente   (che consiste di tutte le classi di equivalenza di  ) nel modo seguente: un insieme di classi di equivalenza in   è aperto se e solo se la loro unione è aperta in  .

Sia   la proiezione che manda ogni elemento di   nella sua classe. Elenchiamo alcune definizioni equivalenti di topologia quoziente sull'insieme  :

 
Proprietà universale della topologia quoziente
  • Un insieme in   è aperto se e solo se lo è la sua controimmagine tramite   in  .
  • La topologia su   è la topologia più fine fra tutte quelle che rendono la mappa   continua.
  • Analogamente possiamo definire la topologia quoziente sfruttando una sua "proprietà universale".

La topologia quoziente è l'unica topologia con questa proprietà: se   è una funzione insiemistica (qualsiasi) tale che   implica   per ogni   e   in  , allora esiste un'unica funzione   tale che   per cui valga:   è continua se e solo se   è continua.

Nell'ultima definizione, diciamo che   scende al quoziente.

Esempi modifica

  • Incollamento. In topologia si costruiscono numerosi spazi per "incollamento". Se X è uno spazio topologico e due punti x e y di X vengono incollati, si costruisce lo spazio quoziente tramite la seguente semplice relazione di equivalenza: a ~ b se e solo se a = b oppure a = x, b = y (oppure a = y, b = x). I due punti quindi diventano un punto solo. Ad esempio, in questo modo si può ottenere uno spazio connesso da uno avente due componenti connesse.
    • In generale, se A è un sottoinsieme di uno spazio topologico X, si costruisce uno spazio quoziente che "identifica A ad un solo punto" mediante la relazione di equivalenza a ~ b se e solo se a e b sono elementi di A. Tale spazio viene talvolta indicato con X/A
  • Consideriamo X = R l'insieme di tutti i numeri reali, e poniamo x ~ y se e solo xy è un intero. Lo spazio quoziente X/~ è omeomorfo al cerchio S1 tramite la mappa che manda la classe di equivalenza di x su exp(2πix).
  • L'esempio precedente può essere esteso in dimensione arbitraria. Consideriamo X = Rn e poniamo x ~ y se e solo se le i-esime coordinate dei vettori x e y differiscono di un intero, per ogni i. Lo spazio quoziente è omeomorfo al toro se n = 2, ed è chiamato toro n-dimensionale per n qualsiasi. Il toro n-dimensionale è omeomorfo al prodotto di n cerchi.
  • La bottiglia di Klein può essere ottenuta quozientando il piano   tramite una opportuna relazione di equivalenza.
  • Il nastro di Möbius può essere ottenuto quozientando un rettangolo tramite una opportuna relazione di equivalenza.
  • Lo spazio proiettivo è ottenuto quozientando uno spazio vettoriale privato dell'origine tramite la relazione seguente:   se e solo se esiste   tale che  , cioè   e   stanno sulla stessa retta.

Proprietà modifica

  • Se X soddisfa qualche assioma di separazione, lo spazio quoziente X/~ può non soddisfarlo. Ad esempio, X/~ è T1 se e solo se ogni classe di equivalenza di ~ è chiusa in X.

Poiché la proiezione sul quoziente è continua, la topologia di quest'ultimo eredita alcune proprietà dello spazio iniziale. Quindi:

Bibliografia modifica

  • Edoardo Sernesi, Geometria 2, Torino, Bollati Boringhieri, 1994, ISBN 978-88-339-5548-3.
  • Czes Kosniowski, Introduzione alla Topologia Algebrica, Zanichelli, 1988, ISBN 88-08-06440-9.
  • (EN) Stephen Willard, General Topology, Reading, MA, Addison-Wesley, 1970, ISBN 0-486-43479-6.

Voci correlate modifica

Collegamenti esterni modifica

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica