Convergenza di variabili casuali

(Reindirizzamento da Convergenza in distribuzione)

In teoria della probabilità e statistica è molto vivo il problema di studiare fenomeni con comportamento incognito ma, nei grandi numeri, riconducibili a fenomeni noti e ben studiati. A ciò vengono in soccorso i vari teoremi di convergenza di variabili casuali, che appunto studiano le condizioni sotto cui certe successioni di variabili casuali di una certa distribuzione tendono ad altre distribuzioni.

I più importanti risultati raggiungibili sotto forma di convergenza di variabili casuali sono il teorema centrale del limite, che afferma che, col crescere della numerosità di un campione, la distribuzione di probabilità della sua media è più o meno come quella di una gaussiana e la legge dei grandi numeri, che giustifica l'utilizzo della media del campione come stima del valore atteso della legge di ogni singola osservazione.

Si distinguono più tipi di convergenza. Ognuna di queste condizioni si esporrà qua per variabili casuali reali univariate, ma si generalizza senza troppe difficoltà per variabili casuali multivariate.

Convergenza in distribuzioneModifica

Una successione di variabili casuali   con funzioni di ripartizione   si dice convergente in distribuzione o convergente in legge alla variabile casuale   con funzione di ripartizione  , cioè  , se il seguente limite esiste

 

in ogni punto   in cui   risulta continua. Questo è il tipo di convergenza usato nel teorema del limite centrale.

Poiché  , ciò che la convergenza in distribuzione implica è che all'aumentare di   la probabilità che la successione assuma valori minori o uguali ad   (ovvero assuma valori in un certo intervallo) sarà sempre più simile alla probabilità che   assuma valori nello stesso intervallo. Si noti che questo non richiede che   e   assumano i medesimi valori. Da questa osservazione segue che   e   possono essere definiti a partire da spazi di probabilità modellanti esperimenti casuali differenti.

EsempiModifica

  •   converge a  . Vale infatti
 

e quindi

 
  • Una successione di variabili casuali uniformi discrete in   converge alla variabile casuale uniforme continua in  . Ciò è notevole considerando il passaggio tra classi profondamente distinte, ovvero quella delle v.c. discrete e quella delle v.c. continue. Vale anche il viceversa: ogni variabile casuale continua si può discretizzare in una successione di variabili casuali discrete, così come una funzione misurabile si interpreta come limite di una successione di funzioni semplici.

TeoremiModifica

  •   se e solo se per ogni funzione continua e limitata   vale  
  • Se   e l'unione dei supporti delle   è limitato allora  
  • Se   e   è una funzione continua, allora  
  • Se   è una variabile  -variata,   e   allora   per ogni  

Convergenza in probabilitàModifica

Come notato prima, la convergenza in distribuzione dà informazioni relative alla sola distribuzione della variabile casuale limite, mentre nulla possiamo dire sugli effettivi valori studiati. Per questo si introduce una nozione di convergenza più forte.

Diremo allora che una successione di variabili casuali   converge in probabilità alla variabile casuale  , in simboli  , se per ogni  

 [1]

o equivalentemente

 

Formalmente, scelti  ,   esiste   tale che per ogni  

 .

Questo tipo di convergenza è usato nella legge debole dei grandi numeri.

Quello che la definizione di convergenza in probabilità sostiene è che, all'aumentare di  , la probabilità che i valori assunti dalla successione differiscano dai valori assunti da   meno di una quantità positiva   piccola a piacere, si avvicina sempre più ad 1.

TeoremiModifica

  •   se e solo se  .
  •   (variabili k-variate) se e solo se   per ogni  .
  • Se  , allora  .
  • Se   e   è degenere (ovvero è una v.c. costante), allora  .
  • Se   e   è una funzione continua, allora  .

Convergenza quasi certaModifica

Una successione di variabili casuali   si dice convergere quasi certamente (o quasi ovunque) alla variabile casuale  , in simboli   o  , se

 .

Poiché la funzione di probabilità   è definita su eventi, ovvero insiemi di esiti, la formula precedente può essere riscritta come

 .

Ovvero, dato lo spazio di probabilità  , il limite

 

esiste per ogni   t.c.  .

Quello che la definizione sostiene è che le v.c.   e   differiranno, in limite, solo su eventi di probabilità nulla. Questa è la nozione di convergenza più forte, perché esprime il fatto che, all'aumentare della numerosità del campione, è un evento quasi certo che le realizzazioni campionarie tenderanno a coincidere con le osservazioni della variabile casuale  . Questo è il tipo di convergenza usato nella legge forte dei grandi numeri.

TeoremiModifica

  •   se e solo se  .
  •   (variabili k-variate) se e solo se   per ogni  .
  •   se e solo se per ogni  .
  • Se  , allora  [2].
  • Dalla precedente si ricava  , poiché  

Convergenza in media r-esimaModifica

Una successione di variabili casuali   si dice convergere in media r-esima, o in norma r-esima, alla variabile casuale  , con  , se[3]:

 

Se  ,   si dice convergere in media a  . Se  , la convergenza si dice in media quadratica.

Secondo l'approccio assiomatico di Kolmogorov, questa convergenza equivale alla convergenza in norma Lp.

TeoremiModifica

  • Se   in media r-esima con  , allora   in probabilità[2]
  • Se   in media r-esima con  , allora   quasi certamente a meno di sottosuccessioni
  • Se   in media r-esima e  , allora   in media s-esima

NoteModifica

  1. ^ J. Jacod; P. Protter, Pag. 143.
  2. ^ a b J. Jacod; P. Protter, Pag. 144.
  3. ^ J. Jacod; P. Protter, Pag. 142.

BibliografiaModifica

  • (EN) Jean Jacod, Philip Protter, Probability Essentials, Springer, 2000, ISBN 3-540-43871-8.
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica