Disequazione con il valore assoluto

In matematica una disequazione con valore assoluto è una disequazione del tipo , dove:

  • e sono due funzioni qualsiasi.[1]
Il grafico della funzione valore assoluto


Caso particolare: funzione costanteModifica

Consideriamo prima di tutto il caso in cui   . Si ha pertanto  .

Le disequazioni di questo tipo si possono risolvere in maniera meccanica a seconda del valore di  , sfruttando il fatto che il valore assoluto di un numero è sempre maggiore o uguale a  .[2]

k < 0Modifica

  •  
Non può mai capitare che il primo membro sia minore o uguale a un numero negativo. La disequazione è impossibile.
  •  
Non può mai capitare che il primo membro sia minore di un numero negativo. La disequazione è impossibile.
  •  
Il primo membro (nei punti dove è definito) è sempre maggiore o uguale di un numero negativo.
La soluzione è  , dove   è il dominio di  .
  •  
Il primo membro (nei punti dove è definito) è sempre maggiore di un numero negativo.
La soluzione è  , dove   è il dominio di  .

k = 0Modifica

  •  
Il primo membro non potrà mai essere minore di zero. La disequazione è impossibile.
  •  
Le uniche soluzioni sono quelle che rendono il primo membro uguale a zero, quindi risolvere questa disequazione è equivalente a risolvere l'equazione  .
  •  
Vanno bene tutti i valori tranne quelli che rendono nulla  . Pertanto in questo caso bisogna risolvere  .
  •  
Qualunque elemento del dominio è accettato: la soluzione è  , sempre con   dominio di  .

k > 0Modifica

In questo caso ci si riporta a disequazioni senza valore assoluto:

  •  
È equivalente a  , cioè al sistema  
  •  
È equivalente a  , cioè al sistema  
  •  
È equivalente a  
  •  
È equivalente a  

Caso generaleModifica

In questo caso sia a primo membro che al secondo ci sono due funzioni di  , e il metodo risolutivo dipende dal segno di disuguaglianza presente tra di esse.[3]

|f(x)| < g(x)Modifica

La disequazione è equivalente a  

o, in alternativa, a  

|f(x)| ≤ g(x)Modifica

La disequazione è equivalente a  

o, in alternativa, a  

|f(x)| > g(x)Modifica

La disequazione è equivalente a  

o, in alternativa, a  

|f(x)| ≥ g(x)Modifica

La disequazione è equivalente a  

o, in alternativa, a  

Presenza di più valori assolutiModifica

 

Nel caso siano presenti due o più valori assoluti è necessario aprire i valori assoluti secondo la definizione:[4]

 

Quindi nell'esercizio proposto i due valori assoluti diventano:

 

e  

Si individuano pertanto gli intervalli dell'asse reale in cui gli argomenti dei valori assoluti mantengono il loro segno. In questo caso ci sono tre intervalli e in tali intervalli i valori assoluti vengono aperti:

 

Le soluzioni dei tre sistemi vanno unite nell'insieme di soluzione della disequazione data in partenza.

NoteModifica

  1. ^ Marzia Re Fraschini, Gabriella Grazzi, I principi della matematica (Volume 1), Atlas, 2012, ISBN 978-88-268-1680-7. p.151
  2. ^ Massimo Bergamini, Graziella Barozzi, Anna Trifone, Matematica.blu (seconda edizione) Vol.1, Zanichelli - Bologna, 2018, ISBN 978-88-08-22085-1. p.578
  3. ^ Marzia Re Fraschini, Gabriella Grazzi, I principi della matematica (Volume 1), Atlas, 2012, ISBN 978-88-268-1680-7. pp.151-152
  4. ^ Nella Dodero, Paolo Baroncini, Roberto Manfredi, Nuovo corso di geometria analitica e di complementi di algebra, Ghisetti e Corvi, 1995, ISBN 88-80-13173-7. pp.138-141

BibliografiaModifica

  • Massimo Bergamini, Graziella Barozzi, Anna Trifone, Matematica.blu (seconda edizione) Vol.1, Zanichelli - Bologna, 2018, ISBN 978-88-08-22085-1.
  • Marzia Re Fraschini, Gabriella Grazzi, I principi della matematica (Volume 1), Atlas, 2012, ISBN 978-88-268-1680-7.
  • Nella Dodero, Paolo Baroncini, Roberto Manfredi, Nuovo corso di geometria analitica e di complementi di algebra, Ghisetti e Corvi, 1995, ISBN 88-80-13173-7.

Voci correlateModifica

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica