Apri il menu principale

Funzione trigonometrica inversa

(Reindirizzamento da Funzioni trigonometriche inverse)

In matematica, le funzioni trigonometriche inverse sono un insieme di funzioni strettamente collegate alle funzioni trigonometriche. Le funzioni inverse principali sono elencate nella seguente tabella.

Nome Notazione usuale Definizione Dominio Codominio
arcoseno
arcocoseno
arcotangente
arcocosecante
arcosecante
arcocotangente

Talvolta vengono utilizzate le notazioni , , etc in luogo di arcsin, arccos, etc, ma questa notazione ha lo svantaggio di creare confusione, per esempio, fra e , sebbene il contesto sia generalmente sufficiente a chiarire l'ambiguità.

Nei linguaggi di programmazione al computer le funzioni arcsin, arccos, arctan sono generalmente chiamate asin, acos, atan. Molti linguaggi di programmazione forniscono anche la funzione con due argomenti atan2, che calcola l'arcotangente di y/x dati y ed x, ma in un intervallo di [-π,π].

Serie infiniteModifica

Analogamente al seno ed al coseno, le funzioni trigonometriche inverse si possono in alternativa definire in termini di serie infinite.

 


 


 


 


 


 

Definizioni come integraliModifica

Queste funzioni si possono anche definire dimostrando che sono integrali di altre funzioni.

 
 
 
 
 
 


Forme logaritmicheModifica

È possibile esprimere queste funzioni usando i logaritmi naturali. Ciò permette di estendere in modo naturale il loro dominio all'intero piano complesso.

 
 
 
 
 
 

Queste relazioni si possono dimostrare elementarmente tramite l'espansione delle funzioni trigonometriche alla forma esponenziale.

Dimostrazione di esempioModifica

 
    (definizione esponenziale del seno)

Sia  

 
    (si risolva per  )
    (si scelga la soluzione positiva)
   Q.E.D.

Derivate delle funzioni trigonometriche inverseModifica

Le derivate delle funzioni trigonometriche inverse valgono:

 
 
 
 
 
 

Questi risultati si ottengono facilmente derivando la forma logaritmica mostrata sopra.

Integrali indefiniti delle funzioni trigonometriche inverseModifica

 
 
 
 
 
 

Tutti questi integrali si ricavano integrazione per parti e le derivate elencate al paragrafo precedente.

Semplificazione sommeModifica

È possibile combinare la somma o differenza di due funzioni trigonometriche inverse in un'espressione dove la funzione trigonometrica compare una sola volta:

 
 
 

Altri progettiModifica

Collegamenti esterniModifica

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica