Apri il menu principale

Matrice di trasformazione

In matematica, e più precisamente in algebra lineare, la matrice di trasformazione, anche detta matrice associata ad una trasformazione o matrice rappresentativa dell'operatore rispetto alle sue basi, è la matrice che rappresenta una trasformazione lineare fra spazi vettoriali rispetto ad una base per ciascuno degli spazi.

Fissata una base per il dominio e una per il codominio, ogni trasformazione lineare è descrivibile tramite una matrice nel modo seguente:

dove è il vettore colonna delle coordinate di un punto del dominio rispetto alla base del dominio e è il vettore colonna delle coordinate dell'immagine, mentre il prodotto è il prodotto righe per colonne.

Indice

DefinizioneModifica

Siano   e   due spazi vettoriali su un campo   di dimensione finita, e   una applicazione lineare. Siano:

 

due basi rispettivamente per   e  .

La matrice   associata a   nelle basi   e   è la matrice   avente nella  -esima colonna le coordinate del vettore   rispetto alla base  :[1]

 

dove la colonna   è l'immagine   dell' -esimo vettore della base di partenza   scritta attraverso le coordinate rispetto alla base di arrivo  .[2]

Gli elementi   di   sono quindi tali che:

 
 
 
 

e si ha:

 

In modo equivalente si può scrivere:

 

Dove le parentesi quadre indicano le coordinate rispetto alla base relativa.

La corrispondenza biunivoca definita fra applicazioni lineari e matrici è un isomorfismo fra lo spazio vettoriale delle applicazioni lineari da   in   e lo spazio delle matrici  :[3]

 

Tale isomorfismo dipende dalle basi scelte per entrambi gli spazi.

Composizione di applicazioni lineariModifica

Nella rappresentazione di applicazioni attraverso le matrici la composizione di funzioni si traduce nell'usuale prodotto fra matrici. Si considerino le applicazioni lineari:

 

Siano   e   le rispettive matrici rappresentative rispetto a tre basi dei relativi spazi. Si ha:

 

ovvero la matrice associata alla composizione è il prodotto delle matrici associate a   e a  .[4]

Dette  ,   basi rispettivamente di   e   si ha:

 

EndomorfismiModifica

 
Endomorfismo rappresentato da una matrice. Il determinante della matrice è -1: questo implica che l'endomorfismo è invertibile e inverte l'orientazione del piano. L'angolo orientato infatti viene mandato nell'angolo con orientazione opposta.

In presenza di un endomorfismo   è naturale scegliere la stessa base   in partenza ed in arrivo. Sia   tale base e sia   la matrice associata a   rispetto alla base  . Si ha allora:[3]

 

In particolare,   è una matrice quadrata  .

Molte proprietà dell'endomorfismo possono essere lette attraverso la matrice rappresentativa:

  •   è l'identità se e solo se   è la matrice identica.
  •   è la funzione costantemente nulla se e solo se   è la matrice nulla.
  •   è biunivoca se e solo se   è invertibile, ovvero se ha determinante   diverso da zero.
  •   preserva l'orientazione dello spazio se  , mentre la inverte se  

Altre proprietà più complesse delle applicazioni lineari, come la diagonalizzabilità, possono essere più facilmente studiate attraverso la rappresentazione matriciale.

Matrici similiModifica

 Lo stesso argomento in dettaglio: Similitudine fra matrici.

Due matrici quadrate   e   sono simili quando esiste una matrice invertibile   tale che:[5][6]

 

In particolare, la matrice identità e la matrice nulla sono simili solo a se stesse.

Le matrici simili rivestono notevole importanza, dal momento che due matrici simili rappresentano lo stesso endomorfismo rispetto a due basi diverse.[7] Se   e   sono due basi dello spazio vettoriale  , dato un endomorfismo   su   si ha:

 

La matrice   è la matrice di cambiamento di base dalla base   alla base  .

EsempiModifica

  • Nel piano cartesiano, indicando con   un punto generico, la trasformazione lineare   viene rappresentata rispetto ad una qualsiasi base dalla matrice identità di ordine 2. Una tale trasformazione è conosciuta anche come funzione identità.
  • Nel piano cartesiano, sia   la riflessione rispetto alla bisettrice del I e III quadrante. Le matrici associate a   usando rispettivamente la base canonica e la base   sono:
 
  • Nel piano la rotazione di un angolo θ in senso antiorario intorno all'origine è lineare e definita da   e  . In forma matriciale si esprime con:
 
Analogamente per una rotazione in senso orario attorno all'origine la funzione è definita da   e   ed in forma matriciale corrisponde alla trasposta della precedente matrice, ovvero:
 
  • La funzione   dallo spazio dei polinomi di grado al più due in sé, che associa ad un polinomio   la sua derivata   è lineare. La matrice associata rispetto alla base   è:
 

NoteModifica

  1. ^ S. Lang, Pag. 106
  2. ^ Hoffman, Kunze, Pag. 87
  3. ^ a b Hoffman, Kunze, Pag. 88
  4. ^ Hoffman, Kunze, Pag. 90
  5. ^ S. Lang, Pag. 115
  6. ^ Hoffman, Kunze, Pag. 94
  7. ^ Hoffman, Kunze, Pag. 92

BibliografiaModifica

  • Serge Lang, Algebra lineare, Torino, Bollati Boringhieri, 1992, ISBN 88-339-5035-2.
  • (EN) Kenneth Hoffman, Ray Kunze, Linear Algebra, 2ª ed., Englewood Cliffs, New Jersey, Prentice - Hall, inc., 1971, ISBN 0-13-536821-9.
  • F. Odetti, M. Raimondo, Elementi di Algebra Lineare e Geometria Analitica, ECIG, 1992, ISBN 88-7545-717-4.

Voci correlateModifica

Collegamenti esterniModifica

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica