Apri il menu principale

In matematica, e più precisamente in algebra lineare, una trasformazione lineare di uno spazio vettoriale è diagonalizzabile o semplice se esiste una base dello spazio rispetto alla quale la matrice di trasformazione è diagonale. In modo equivalente, una matrice quadrata è diagonalizzabile o semplice se è simile ad una matrice diagonale.[1]

Una trasformazione lineare è diagonalizzabile se esistono "assi" passanti per l'origine la cui direzione rimane invariata nella trasformazione stessa: ognuno di tali assi è un autospazio relativo ad un autovettore della trasformazione, e la trasformazione effettua una omotetia. Diagonalizzare una trasformazione significa porsi in un sistema di riferimento che rimane "solidale" con essa, e la trasformazione risulta completamente definita quando si conosce il suo comportamento sugli assi del sistema.

Indice

DefinizioneModifica

Sia   un endomorfismo di uno spazio vettoriale  , cioè una trasformazione lineare  . Si dice che   è diagonalizzabile se esiste una base di   rispetto alla quale la matrice che rappresenta   è diagonale.[2] In particolare, la base che diagonalizza   è composta da suoi autovettori.

In modo equivalente, una matrice quadrata è diagonalizzabile se è simile a una matrice diagonale.[3] La matrice   è quindi diagonalizzabile nel campo di appartenenza se esiste una matrice invertibile   tale che:

 

ovvero:

 

Scrivendo   in termini dei vettori colonna:

 

la precedente relazione diventa:

 

I vettori colonna di   sono dunque autovettori di  , e i corrispondenti elementi della matrice diagonale sono i rispettivi autovalori. L'invertibilità di   implica inoltre l'indipendenza lineare degli autovettori, che formano una base dello spazio.

Per il teorema spettrale, se   è normale e diagonalizzabile allora la base di   che è composta da suoi autovettori è una base ortonormale. In tal caso   è unitaria.

Polinomio caratteristicoModifica

 Lo stesso argomento in dettaglio: Polinomio caratteristico e Teorema di diagonalizzabilità.

Un modo per verificare che una applicazione è diagonalizzabile è quello di studiare la diagonalizzabilità della sua matrice associata   nelle basi degli insiemi di partenza e di arrivo. A tal fine, uno strumento di notevole importanza è il polinomio caratteristico, che permette di ottenere gli autovalori con la loro molteplicità.

Sia   una matrice quadrata con   righe a valori in un campo  . Il polinomio caratteristico di   è un polinomio di grado   definito nel modo seguente:

 

Le radici   di   appartenenti al campo   sono gli autovalori di  .[4] Ogni autovalore   ha una sua molteplicità come radice del polinomio caratteristico, detta molteplicità algebrica.[5] Un autovalore con molteplicità algebrica 1 si dice semplice.

Il teorema di diagonalizzabilità fornisce un criterio necessario e sufficiente che permette di stabilire se un'applicazione lineare è diagonalizzabile. Una matrice quadrata   con   righe è diagonalizzabile se e solo se valgono entrambi i fatti seguenti:

  • La somma delle molteplicità algebriche dei suoi autovalori è  , ossia il polinomio caratteristico può essere fattorizzato nel campo attraverso polinomi di primo grado.
  • Le molteplicità algebriche e geometriche di ogni autovalore sono coincidenti, ossia la dimensione degli autospazi è pari alla molteplicità con la quale il relativo autovalore è radice del polinomio caratteristico. Poiché la molteplicità geometrica è sempre minore o uguale di quella algebrica, se l'applicazione ha   autovalori distinti nel campo allora è diagonalizzabile.

Teorema spettraleModifica

 Lo stesso argomento in dettaglio: Teorema spettrale.

Il teorema spettrale mostra che una condizione necessaria e sufficiente affinché esista una base ortonormale di autovettori di un endomorfismo è che esso sia autoaggiunto. Il teorema può essere esteso al caso complesso, dove l'enunciato vale per la classe più generale degli operatori normali.

Caso finito-dimensionaleModifica

Sia   un endomorfismo su uno spazio vettoriale reale   di dimensione   sul quale è definito un prodotto scalare definito positivo. Allora   è autoaggiunto se e solo se esiste una base ortonormale di   fatta di autovettori per  .[6] L'endomorfismo   è quindi diagonalizzabile.

Una versione equivalente del teorema, enunciata con le matrici, afferma che ogni matrice simmetrica è simile a una matrice diagonale tramite una matrice ortogonale.[7]

Come conseguenza del teorema, per ogni matrice simmetrica   esistono una matrice ortogonale   ed una matrice diagonale   tali per cui:[8]

 

In particolare, gli autovalori di una matrice simmetrica sono tutti reali.

Come conseguenza del teorema, una matrice quadrata   di rango n sul campo   è diagonalizzabile se e solo se la somma delle dimensioni dei suoi autospazi è pari a n. Infatti, tale condizione si verifica se e solo se esiste una base di   composta da autovettori di  , e se la base esiste è possibile definire una matrice   avente i vettori di tale base come colonne: in tal caso   è diagonale, e gli elementi della diagonale sono gli autovalori di  . Le condizioni di diagonalizzabilità per le applicazioni lineari sono equivalenti a quelle per le matrici rappresentative.

Caso infinito-dimensionaleModifica

Il caso infinito-dimensionale costituisce una generalizzazione del caso precedente, ed esistono diverse formulazioni del teorema a seconda della classe di operatori che si vuole considerare. La principale distinzione riguarda gli operatori limitati e non limitati.

Il teorema spettrale afferma che un operatore limitato e autoaggiunto   definito su uno spazio di Hilbert   è un operatore di moltiplicazione.

In modo equivalente, esiste una famiglia di misure   sullo spettro   di   ed esiste un operatore unitario:

 

tali che:[9]

 

con:

 

Una tale scrittura di   è detta rappresentazione spettrale dell'operatore.

Come corollario, segue che esiste una misura   su uno spazio di misura   ed esiste un operatore unitario:

 

tali che:[10]

 

per una qualche funzione misurabile limitata ed a valori reali   su  .

Decomposizione spettraleModifica

Il teorema spettrale fornisce le condizioni per cui sia possibile diagonalizzare un operatore rispetto ad una base ortonormale. Quando questo risulta possibile nel caso finito-dimensionale, ad autovalori distinti corrispondono autovettori mutuamente ortogonali, e pertanto gli autospazi sono in somma diretta. Un operatore normale può, di conseguenza, essere scritto come una combinazione lineare di proiettori ortogonali sugli autospazi, i cui coefficienti sono gli autovalori relativi ad ogni autospazio.

Nel caso infinito-dimensionale la normalità, ed in particolare l'autoaggiuntezza, non garantisce la diagonalizzabilità. In generale un operatore normale non può essere più scritto come combinazione lineare di proiettori ortogonali. Attraverso la misura a valori di proiettore è tuttavia possibile ottenere una scrittura integrale che permette di descrivere l'operatore in termini del suo spettro.

Caso finito-dimensionaleModifica

 Lo stesso argomento in dettaglio: Proiezione ortogonale.

Come conseguenza del teorema spettrale, sia nel caso reale che nel caso complesso, il teorema di decomposizione spettrale afferma che gli autospazi di   sono ortogonali e in somma diretta:

 

Equivalentemente, se   è la proiezione ortogonale su  , si ha:

 

La decomposizione spettrale è un caso particolare della decomposizione di Schur. È anche un caso particolare della decomposizione ai valori singolari.

Caso infinito-dimensionaleModifica

 Lo stesso argomento in dettaglio: Misura a valori di proiettore.

Sia   un operatore normale limitato definito su uno spazio di Hilbert  . Il teorema di decomposizione spettrale per operatori normali afferma che esiste un'unica misura a valori di proiettore   tale per cui:

 

dove   è lo spettro di  . Si dice che   è la misura a valori di proiettore associata ad  .

In particolare, se   è un operatore autoaggiunto si può definire una misura a valori di proiettore limitata:

 

definita sullo spettro   di  , in cui   è la funzione indicatrice. Tale misura può essere univocamente associata ad   nel seguente modo:

 

per ogni funzione misurabile limitata  , e in tal caso si ha:

 

La formula a sinistra è detta diagonalizzazione di  .[11]

Se da un lato è possibile definire univocamente un operatore autoaggiunto (o, più in generale, un operatore normale)   a partire da una misura a valori di proiettore, dall'altro se è possibile diagonalizzare   tramite una misura a valori di proiettore limitata   allora   è la misura a valori di proiettore associata univocamente ad  .

Operatori non limitatiModifica

 Lo stesso argomento in dettaglio: Trasformata di Cayley.

Si consideri un operatore autoaggiunto   non limitato. Attraverso la trasformata di Cayley   associata ad  :

 

è possibile definire, a partire da  , una misura a valori di proiettore   nel modo seguente:

 

L'insieme   è un borelliano contenuto nello spettro (reale)   di  , e   è il risultato ottenuto applicando la trasformata di Cayley su  .

Si dimostra che se la funzione identità, definita su  , è di classe   rispetto alla misura  , allora   definisce una misura a valori di proiettore su  .

In particolare, è possibile scrivere:

 

Anche nel caso di   non limitato la corrispondenza tra   ed una misura a valori di proiettore è biunivoca.

EsempiModifica

Esempio di calcoloModifica

Si consideri la matrice:

 

Il polinomio caratteristico è:

 

che si annulla per gli autovalori:

 

Quindi ha 3 autovalori distinti. Per il primo criterio esposto precedentemente, la matrice è diagonalizzabile.

Se si è interessati a trovare esplicitamente una base di autovettori si deve fare del lavoro ulteriore: per ogni autovalore, si imposta l'equazione   e si risolve cercando i valori del vettore   che la soddisfano, sostituendo volta per volta i tre autovalori precedentemente calcolati.

Una base di autovettori per esempio è data da:

 

Si vede facilmente che sono indipendenti, quindi formano una base, e che sono autovettori, infatti  .

Si può scrivere esplicitamente la matrice di cambiamento di base incolonnando i vettori trovati:

 

Quindi la matrice invertibile   diagonalizza  , come si verifica calcolando:

 

La matrice finale deve essere diagonale e contenere gli autovalori, ciascuno con la sua molteplicità. È utile osservare come al variare dell'ordine dei vettori colonna in   varia l'ordine degli autovalori nella matrice  ; in particolare all'autovalore dell'n-esima colonna di D è associato un autovettore del suo autospazio nell'n-esima colonna di  .

Numeri complessiModifica

Se il campo su cui si lavora è quello dei numeri complessi, una matrice n per n ha n autovalori (contando ciascuno con la relativa molteplicità, per il teorema fondamentale dell'algebra). Se le molteplicità sono tutte 1, la matrice è diagonalizzabile. Altrimenti, dipende. Un esempio di matrice complessa non diagonalizzabile è descritto sotto.

Il fatto che vi siano comunque n autovalori implica che è sempre possibile ridurre una matrice complessa ad una forma triangolare: questa proprietà, più debole della diagonalizzabilità, è detta triangolarizzabilità.

Numeri realiModifica

Sui numeri reali le cose cambiano, perché la somma delle molteplicità di un polinomio di grado n può essere inferiore a n. Ad esempio la matrice:

 

non ha autovalori, perché il suo polinomio caratteristico   non ha radici reali. Quindi non esiste nessuna matrice reale   tale che   sia diagonale! D'altro canto, la stessa matrice B vista con i numeri complessi ha due autovalori distinti i e -i, e quindi è diagonalizzabile. Infatti prendendo:

 

si trova che   è diagonale. La matrice   considerata sui reali invece non è neppure triangolabile.

Ci sono anche matrici che non sono diagonalizzabili né sui reali né sui complessi. Questo accade in alcuni casi, in cui ci sono degli autovalori con molteplicità maggiore di uno. Ad esempio, si consideri:

 

Questa matrice non è diagonalizzabile: ha 0 come unico autovalore con molteplicità 2, e se fosse diagonalizzabile sarebbe simile alla matrice nulla, cosa impossibile a prescindere dal campo reale o complesso.

NoteModifica

  1. ^ F. Odetti, Pag. 246.
  2. ^ S. Lang, Pag. 114.
  3. ^ S. Lang, Pag. 115.
  4. ^ S. Lang, Pag. 228.
  5. ^ S. Lang, Pag. 230.
  6. ^ S. Lang, Pag. 245.
  7. ^ S. Lang, Pag. 248.
  8. ^ S. Lang, Pag. 246.
  9. ^ Reed, Simon, Pag. 227.
  10. ^ Reed, Simon, Pag. 221.
  11. ^ Reed, Simon, Pag. 234.

BibliografiaModifica

  • Serge Lang, Algebra lineare, Torino, Bollati Boringhieri, 1992, ISBN 88-339-5035-2.
  • (EN) Michael Reed, Barry Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis, 2ª ed., San Diego, California, Academic press inc., 1980, ISBN 0-12-585050-6.
  • F. Odetti, M. Raimondo, Elementi di Algebra Lineare e Geometria Analitica, ECIG, 1992, ISBN 88-7545-717-4.
  • (EN) Roger A. Horn e Charles R. Johnson, Matrix Analysis, Cambridge University Press, 1985, ISBN 978-0-521-38632-6.

Voci correlateModifica

Altri progettiModifica

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica