Distribuzione normale

distribuzione di probabilità continua
(Reindirizzamento da Campana di Gauss)

La distribuzione normale (o distribuzione di Gauss dal nome del matematico tedesco Carl Friedrich Gauss, o distribuzione a Campana di Gauss), nella teoria della probabilità, è una distribuzione di probabilità continua che è spesso usata come prima approssimazione per descrivere variabili casuali a valori reali che tendono a concentrarsi attorno a un singolo valor medio.

Variabile casuale normale (o di Gauss)
Funzione di densità
Funzione di densità di una variabile casuale normale
La linea in rosso si riferisce alla variabile casuale normale standardizzata
Funzione di ripartizione
Funzione di ripartizione di una variabile casuale normale o semi-campana di Gauss
I colori corrispondono a quelli delle densità della figura precedente
Parametri,
Supporto
Funzione di densità
Funzione di ripartizione
Valore atteso
Mediana
Moda
Varianza
Indice di asimmetria
Curtosi
Entropia
Funzione generatrice dei momenti
Funzione caratteristica

Il grafico della funzione di densità di probabilità associata è simmetrico e ha una forma a campana, nota come "curva a campana", "curva normale", "curva gaussiana"[1] o "curva degli errori".[2]

DescrizioneModifica

La distribuzione normale è considerata il caso base delle distribuzioni di probabilità continue a causa del suo ruolo nel teorema del limite centrale. Un insieme di valori dato potrebbe essere normale: per stabilirlo si può usare un test di normalità. Più specificamente, assumendo certe condizioni, la somma di n variabili casuali con media e varianza finite tende a una distribuzione normale al tendere di n all'infinito. Grazie a questo teorema, la distribuzione normale si incontra spesso nelle applicazioni pratiche, venendo usata in statistica e nelle scienze naturali e sociali[3] come un semplice modello per fenomeni complessi.

La distribuzione normale dipende da due parametri, la media μ e la varianza σ2, ed è indicata tradizionalmente con:

 [4]

MetodologiaModifica

La distribuzione normale è caratterizzata dalla seguente funzione di densità di probabilità, cui spesso si fa riferimento con la dizione curva di Gauss o gaussiana:

 

Dove   è il valore atteso e   la varianza.

Per dimostrare che   è effettivamente una funzione di densità di probabilità si ricorre innanzi tutto alla standardizzazione (statistica) della variabile casuale, cioè alla trasformazione tale per cui risulta:

 ,

dove la variabile risultante   ha anch'essa distribuzione normale con parametri   e  . L'integrale della funzione di densità di probabilità della variabile casuale standardizzata   è il seguente:

 

Dato che deve necessariamente valere la condizione  , allora risulta anche   quindi:

 
 

dove anche la variabile casuale   ha distribuzione normale standardizzata. Per risolvere questo integrale doppio si ricorre alle coordinate polari   e  , dove   e  . La matrice jacobiana della trasformazione è

 ,

il cui determinante è pari a  . Sostituendo nell'integrale di cui sopra si ottiene:

 

La sua funzione generatrice dei momenti è

 

Il valore atteso e la varianza (che sono gli unici due parametri di questa variabile casuale) sono appunto μ e σ².

Non essendo possibile esprimere l'integrale della   in forma chiusa mediante funzioni elementari, è necessario rendere disponibili in forma tabellare i valori della sua funzione di ripartizione. I più usati sono:

68,3% = P{ μ − 1,00 σ < X < μ + 1,00 σ }
95,0% = P{ μ − 1,96 σ < X < μ + 1,96 σ }
95,5% = P{ μ − 2,00 σ < X < μ + 2,00 σ }
99,0% = P{ μ − 2,58 σ < X < μ + 2,58 σ }
99,7% = P{ μ − 3,00 σ < X < μ + 3,00 σ }

Essendo   una funzione simmetrica è sufficiente conoscere la funzione di ripartizione dei valori positivi, per conoscere pure quella dei valori negativi (e viceversa).

Dalla variabile casuale Normale si possono ottenere altre variabili casuali, come la t di Student, la Chi Quadrato e la F di Fisher-Snedecor, nonché le loro "varianti" non centrali (t non centrale, chi quadrato non centrale e F non centrale).

TeoremiModifica

Combinazione lineare di variabili gaussianeModifica

Se
X1, X2, ..., Xn sono n variabili casuali Normali tra di loro indipendenti, ciascuna con valore atteso μi e varianza σ²i,
allora
la variabile casuale Y = α1X1 + α2X2 + ... + αnXn è a sua volta una variabile casuale Normale con valore atteso μ = α1μ1 + α2μ2 + ... + αnμn e varianza σ² = α²1σ²1 + α²2σ²2 + ... + α²nσ²n.

Altri teoremi: teorema di Cochran.

Relazioni con altre variabili casualiModifica

La Normale come derivazione da altre vociModifica

I teoremi del limite centrale sono una famiglia di teoremi che hanno in comune l'affermazione che la somma (normalizzata) di un grande numero di variabili casuali è distribuita approssimativamente come una variabile casuale normale.


Se X è distribuita come una variabile casuale binomiale con n molto grande (per dare un'idea di quanto grande, possiamo dire che deve essere n>30), e approssimativamente np>10, allora la binomiale può essere approssimata con una Normale con valore atteso pari a np e varianza uguale a npq: N(np ; npq).


Se X è distribuita come una variabile casuale poissoniana con il parametro λ molto grande (orientativamente λ > 10), allora la Poissoniana può essere approssimata con una Normale con valore atteso e varianza pari a λ: N(λ ; λ).

Variabili casuali derivate dalla NormaleModifica

Date n distribuzioni normali Z1(0;1); Z2(0;1); ... Zn(0;1) con media nulla e varianza unitaria indipendenti tra loro. Allora

χ²n= Z1² + Z2² + .... +Zn²

è una variabile casuale chi quadro con   gradi di libertà.


Siano Z1, Z2, Z3..., Zn variabili casuali indipendenti distribuite come una Normale con media nulla e varianza unitaria, e siano inoltre a1, a2, a3..., an delle costanti tali che

 

allora si indica con χ'² la variabile casuale chi quadro non centrale con n gradi di libertà costruita come

 

Se Z~N(0;1) e X~χ²n, allora T=Z/√X/n è distribuita come una t di Student con n gradi di libertà.


Se Z~N(0;1) e  , allora T è una v.c. di Birnbaum-Saunders con i parametri   e  .

La normale nell'inferenza bayesianaModifica

Variabile casuale Gamma come priori coniugati della normaleModifica

Nell'ambito dell'inferenza bayesiana si trova la seguente relazione tra la normale e la distribuzione Gamma.

Se X è una distribuzione normale con parametri μ e 1/θ

 

ed il parametro θ ha una distribuzione Γ con i parametri a e b

 

allora il parametro θ è distribuito a posteriori anch'esso come una variabile casuale Gamma, ma con parametri a+1/2 e b+(μ-x)2/2

 

Priori coniugati normale di una normaleModifica

Se X è distribuita come una v.c. normale con parametri m e σ2

 

e il parametro m è distribuito a priori come una v.c. normale con i parametri μ e σ2

 

allora il parametro m è distribuito a posteriori anch'esso come una v.c. Normale, ma con parametri   e  

 

StoriaModifica

Abraham de Moivre, nell'ambito dei suoi studi sulla probabilità, introdusse per la prima volta la distribuzione normale in un articolo del 1733. Gauss, che a quel tempo non era ancora nato, ne fu invece un grande utilizzatore: egli propose la "distribuzione normale" studiando il moto dei corpi celesti[5]. Altri la usavano per descrivere fenomeni anche molto diversi come i colpi di sfortuna nel gioco d'azzardo o la distribuzione dei tiri attorno ai bersagli. Da qui i nomi "curva di Gauss" e "curva degli errori".

Nel 1809 il matematico americano Adrain pubblicò due derivazioni della legge normale di probabilità, simultaneamente e indipendentemente da Gauss[6] I suoi lavori rimasero ampiamente ignorati dalla comunità scientifica fino al 1871, allorché furono "riscoperti" da Cleveland Abbe.[7].

Nel 1835 Quételet pubblicò uno scritto nel quale, fra le altre cose, c'erano i dati riguardanti la misura del torace di soldati scozzesi e la statura dei militari di leva francesi. Quételet mostrò come tali dati si distribuivano come una "Gaussiana", ma non andò oltre.

Fu Galton a intuire che la curva in questione, da lui detta anche "ogiva", poteva essere applicata a fenomeni anche molto diversi, e non solo ad "errori". Questa idea di curva per descrivere i "dati" in generale portò ad usare il termine "Normale", in quanto rappresentava un substrato "normale" ovvero la "norma" per qualsiasi distribuzione presente in natura.

Nel tentativo di confrontare curve diverse, Galton - in mancanza di strumenti adeguati - si limitò ad usare due soli parametri: la media e la varianza, dando così inizio alla statistica parametrica.

NoteModifica

  1. ^ curva normale in "Enciclopedia della Matematica", su treccani.it. URL consultato il 27 gennaio 2022.
  2. ^ gaussiana, distribuzione in "Dizionario di Economia e Finanza", su treccani.it. URL consultato il 27 gennaio 2022.
  3. ^ Gale Encyclopedia of Psychology — Normal Distribution
  4. ^ Ross (2003), p. 170.
  5. ^ Tony Crilly, 50 grandi idee di matematica, EDIZIONI DEDALO, 1º gennaio 2009, ISBN 9788822068095. URL consultato il 26 febbraio 2017.
  6. ^ Stigler (1978), p. 243.
  7. ^ Stigler (1978), p. 244.

BibliografiaModifica

Voci correlateModifica

Altri progettiModifica

Collegamenti esterniModifica

Controllo di autoritàThesaurus BNCF 57810 · LCCN (ENsh85053556 · GND (DE4075494-7 · BNF (FRcb119421818 (data) · J9U (ENHE987007560462505171
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica