Limite (matematica)

concetto matematico

In matematica, il limite è un concetto basato sull'idea di vicinanza[1] ed è utilizzato per studiare localmente, cioè "vicino" a un punto del dominio, funzioni o, come caso particolare, successioni.

Il fondamentamento concettuale del calcolo infinitesimale sta proprio nel concetto di limite e, perciò si può considerare una pietra miliare nella storia del pensiero scientifico[2]; esso infatti è ricorrente in tutti i rami dell'analisi matematica, per esempio nel definire la continuità, la derivazione e l'integrazione.

Il concetto di limite di una funzione, più generale del limite di una successione, può essere generalizzato da quello di limite di un filtro.

Il concetto di limite era già presente in modo intuitivo nell'antichità, per esempio in Archimede (nel suo metodo di esaustione), e fu utilizzato, anche se non in modo rigoroso, a partire dalla fine del XVII secolo da Newton, Leibniz, Eulero e D'Alembert.

La prima definizione abbastanza rigorosa di limite risale al XIX secolo con Cauchy, seguita da una miglior formalizzazione di Weierstrass.

Una completa teoria del limite si ha con Heine, che nel 1872 pubblicò un lavoro che creò molto interesse all'epoca e nel quale stilò regole e proprietà del limite. Molti altri studiosi si sono interessati al problema del limite, approfondendo l'argomento con lo studio dell'analisi infinitesimale, tra cui Bolzano, Dedekind e Cantor.

Ma solo nel 1922 Eliakim Hastings Moore ed H.L. Smith diedero una nozione generale (topologica) di limite[3], ed è quella attualmente utilizzata in matematica. Nel 1937, Henri Cartan ne fornì una versione equivalente, basata sul concetto di filtro.

Limite di una successione

modifica
  Lo stesso argomento in dettaglio: Limite di una successione.

Una successione   di numeri reali ha come limite il numero   se al crescere di   i termini della successione "sono arbitrariamente vicini" al valore  . Formalmente, questa nozione è resa chiedendo che per ogni   piccolo a piacere esista un numero naturale   tale che   per ogni  .

Una successione può non avere limite, ad esempio  , data da:

 

non ha limite. D'altra parte, se esiste un limite  , si dice che la successione converge ad  ; in questo caso, il limite è unico (una successione non può convergere a due valori distinti). Ad esempio, la successione  , data da:

 

converge a zero.

Considerando uno spazio topologico  , una successione   con   tende al limite   se, comunque si prenda un intorno   di  , esiste un   tale per cui   per tutti gli  , e si scrive:

 

Se   è uno spazio di Hausdorff il limite di   con  , se esiste, è unico.

Limite di una funzione

modifica
  Lo stesso argomento in dettaglio: Limite di una funzione.

Il limite di una funzione generalizza il limite di una successione di punti in uno spazio topologico  ; si considera la successione una funzione   nello spazio topologico   con la topologia discreta. In tale definizione, un intorno di   ha la forma  .

Siano dati una funzione   definita su un sottoinsieme   della retta reale   ed un punto di accumulazione   di  . Un numero reale   è il limite di   per   tendente a   se la distanza fra   ed   è arbitrariamente piccola quando   si avvicina a  .

La distanza fra i punti è misurata usando il valore assoluto della differenza: quindi   è la distanza fra   e   e   è la distanza fra   ed  . Il concetto di "arbitrariamente piccolo" è espresso formalmente con i quantificatori "per ogni" (quantificatore universale) ed "esiste" (quantificatore esistenziale).

Formalmente,   è limite se per ogni numero reale   piccolo a piacere esiste un altro numero reale positivo   tale che:

  per ogni   in   con  .

In questo caso si scrive:

 

La definizione di limite di una funzione è comoda per formalizzare il concetto di funzione continua.

Limite di un ultrafiltro

modifica

Dato uno spazio topologico  , un punto   è il limite di un ultrafiltro   su   se ogni intorno di   appartiene a  .

Il limite di una funzione rispetto ad un filtro è definito considerando una funzione   tra spazi topologici e un filtro   su  . Il punto   è il limite di   in   rispetto ad   se   è il limite di   e   è il limite di  . Si scrive in tal caso:

 

Limite insiemistico

modifica
  Lo stesso argomento in dettaglio: Limite insiemistico.

Il concetto di limite si estende anche alle successioni di insiemi attraverso le nozioni di limite superiore e limite inferiore: data una successione di insiemi  , l'insieme limite è definito come l'insieme che intuitivamente contiene gli elementi che stanno nel maggior numero di insiemi della successione. Formalmente, una successione di insiemi si dice possedere limite se vale la seguente uguaglianza:

 
  1. ^ (EN) Limit | Definition, Example, & Facts | Britannica, su www.britannica.com, 6 agosto 2024. URL consultato il 2 settembre 2024.
  2. ^ Marco Bramanti, Carlo D. Pagani e Sandro Salsa, Analisi matematica 1, Prima edizione, Bologna-Milano, Zanichelli, ISBN 978-88-08-06485-1.
  3. ^ Si veda Moore, Smith A General Theory of Limits

Bibliografia

modifica
  • Carlo Domenico Pagani e Sandro Salsa, Analisi matematica 1, Seconda edizione, Bologna, Zanichelli, ISBN 978-88-08-15133-9.
  • Lucia Doretti, Limiti di funzioni (PDF), Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche dell'Università di Siena.
  • Paolo Marcellini, Carlo Sbordone, Analisi Matematica Uno, Liguori Editore, Napoli, ISBN 88-207-2819-2, 1998.
  • Nicola Fusco, Paolo Marcellini, Carlo Sbordone, Lezioni di analisi matematica due, Zanichelli Editore, Bologna, ISBN 978-88-08-52020-3, 2020.
  • (EN) Moore E.H., Smith H.L., "A General Theory of Limits". American Journal of Mathematics 44 (2), 102–121 (1922).
  • (EN) Miller, N. Limits: An Introductory Treatment. Waltham, MA: Blaisdell, 1964.
  • (EN) Gruntz, D. On Computing Limits in a Symbolic Manipulation System. Doctoral thesis. Zürich: Swiss Federal Institute of Technology, 1996.
  • (EN) Hight, D. W. A Concept of Limits. New York: Prentice-Hall, 1966.
  • (EN) Kaplan, W. "Limits and Continuity." §2.4 in Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, pp. 82–86, 1992.

Voci correlate

modifica

Altri progetti

modifica

Collegamenti esterni

modifica
Controllo di autoritàThesaurus BNCF 19410 · GND (DE4316404-3 · NDL (ENJA00567231
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica